
© Copyright 1991, 1995 National Instruments Corporation.
All Rights Reserved.

LabWindows® VXI
Library Reference Manual

Version 2.3

bus

March 1995 Edition

Part Number 320318-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (512) 794-5678

Branch Offices:
Australia 03 879 9422, Austria 0662 435986, Belgium 02 757 00 20, Canada (Ontario) 519 622 9310,
Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 65 33 70,
Germany 089 714 50 93, Hong Kong 02 26375019, Italy 02 48301892, Japan 03 3788 1921, Korea 02 596-7456,
Mexico 05 202 2544, Netherlands 01720 45761, Norway 03 846866, Spain 91 640 0085, Sweden 08 730 49 70,
Switzerland 056 27 00 20, U.K. 0635 523545

Limited Warranty

The GPIB-PCII is warranted against defects in materials and workmanship for a period of two years from the date of
shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace
equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART
OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER.
NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against National Instruments must be brought within
one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due
to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation,
or maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and
power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-VXI™ and TIC™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

Warning Regarding Medical and Clinical Use
of National Instruments Products

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v LabWindows VXI Library Reference Manual

Contents

About This Manual.. xi
Organization of This Manual.. xi
Conventions Used in This Manual.. xii
Related Documentation .. xiii
Customer Communication .. xiii

Chapter 1
VXI Library Overview.. 1-1

The LabWindows VXI Library Package .. 1-1
Installing the VXI Library .. 1-1
LabWindows VXI Library Overview ... 1-2

The VXI Library Functions.. 1-2
Reporting Status Information ... 1-7

Chapter 2
System Configuration Functions ... 2-1

CloseVXIlibrary ... 2-2
CreateDevInfo .. 2-3
FindDevLA... 2-4
GetDevInfo ... 2-6
GetDevInfoLong .. 2-8
GetDevInfoShort .. 2-9
GetDevInfoStr .. 2-11
InitVXIlibrary... 2-12
SetDevInfo.. 2-13
SetDevInfoLong ... 2-15
SetDevInfoShort ... 2-16
SetDevInfoStr ... 2-18

Chapter 3
Commander Word Serial Protocol Functions ... 3-1

WSabort.. 3-2
WSclr.. 3-4
WScmd ... 3-5
WSEcmd... 3-7
WSgetTmo.. 3-9
WSLcmd... 3-10
WSLresp ... 3-12
WSrd... 3-14
WSrdf ... 3-16
WSrdi.. 3-19
WSrdl.. 3-21
WSresp ... 3-23
WSsetTmo.. 3-25
WStrg.. 3-26
WSwrt... 3-28
WSwrtf ... 3-30
WSwrti.. 3-32
WSwrtl.. 3-34

Contents

LabWindows VXI Library Reference Manual x © National Instruments Corporation

Chapter 4
Servant Word Serial Protocol Functions... 4-1

GenProtError .. 4-2
GetWSScmdHandler .. 4-3
GetWSSEcmdHandler.. 4-4
GetWSSLcmdHandler.. 4-5
GetWSSrdHandler.. 4-6
GetWSSwrtHandler.. 4-7
RespProtError ... 4-8
SetWSScmdHandler ... 4-9
SetWSSEcmdHandler .. 4-10
SetWSSLcmdHandler .. 4-11
SetWSSrdHandler .. 4-12
SetWSSwrtHandler .. 4-13
WSSabort.. 4-14
WSSdisable .. 4-15
WSSenable ... 4-16
WSSLnoResp ... 4-17
WSSLsendResp.. 4-18
WSSnoResp.. 4-19
WSSrd .. 4-20
WSSrdi ... 4-22
WSSrdl ... 4-24
WSSsendResp .. 4-26
WSSwrt .. 4-27
WSSwrti ... 4-29
WSSwrtl ... 4-31

Default Handlers for the Servant Word Serial Functions ... 4-33
DefaultWSScmdHandler ... 4-33
DefaultWSSEcmdHandler.. 4-34
DefaultWSSLcmdHandler.. 4-35
DefaultWSSrdHandler.. 4-36
DefaultWSSwrtHandler.. 4-37

Chapter 5
Low-Level VXIbus Access Functions ... 5-1

ClearBusError... 5-2
GetByteOrder ... 5-3
GetContext.. 5-4
GetPrivilege.. 5-5
GetVXIbusStatus.. 5-6
GetVXIbusStatusInd .. 5-7
GetWindowRange .. 5-9
MapVXIAddress .. 5-11
RestoreContext ... 5-13
SaveContext.. 5-14
SetByteOrder .. 5-15
SetContext .. 5-16
SetPrivilege .. 5-17
UnMapVXIAddress.. 5-18
VXIpeek ... 5-20
VXIpoke ... 5-21

Contents

© National Instruments Corporation ix LabWindows VXI Library Reference Manual

Chapter 6
High-Level VXIbus Access Functions.. 6-1

VXIin.. 6-2
VXIinReg ... 6-4
VXImove.. 6-5
VXIout.. 6-7
VXIoutReg ... 6-9

Chapter 7
Local Resource Access Functions.. 7-1

GetMyLA ... 7-2
ReadMODID .. 7-3
SetMODID ... 7-4
VXIinLR... 7-5
VXImemAlloc.. 7-6
VXImemCopy .. 7-8
VXImemFree.. 7-10
VXIoutLR... 7-12

Chapter 8
VXI Signal Functions ... 8-1

DisableSignalInt ... 8-2
EnableSignalInt .. 8-3
GetSignalHandler ... 8-4
RouteSignal .. 8-5
SetSignalHandler.. 8-7
SignalDeq ... 8-8
SignalEnq ... 8-10
SignalJam ... 8-11
WaitForSignal .. 8-12

Default Handler for VXI Signal Functions... 8-14
DefaultSignalHandler ... 8-14

Chapter 9
VXI Interrupt Functions ... 9-1

AcknowledgeVXIint .. 9-2
AssertVXIint .. 9-3
DeAssertVXIint.. 9-4
DisableVXIint .. 9-5
DisableVXItoSignalInt ... 9-6
EnableVXIint.. 9-7
EnableVXItoSignalInt .. 9-8
GetVXIintHandler .. 9-9
RouteVXIint ... 9-10
SetVXIintHandler... 9-12
VXIintAcknowledgeMode ... 9-13

Default Handler for VXI Interrupt Functions ... 9-14
DefaultVXIintHandler.. 9-14

Chapter 10
VXI Trigger Functions.. 10-1

AcknowledgeTrig ... 10-2
DisableTrigSense.. 10-4
EnableTrigSense... 10-5
GetTrigHandler .. 10-7

Contents

LabWindows VXI Library Reference Manual x © National Instruments Corporation

MapTrigToTrig ... 10-8
SetTrigHandler ..10-10
SrcTrig... 10-11
TrigAssertConfig... 10-13
TrigCntrConfig ..10-15
TrigExtConfig ... 10-17
TrigTickConfig..10-19
UnMapTrigToTrig... 10-21
WaitForTrig... 10-23

Default Handlers for VXI Trigger Functions... 10-25
DefaultTrigHandler ... 10-25
DefaultTrigHandler2 ... 10-26

Chapter 11
System Interrupt Handler Functions ..11-1

AssertSysreset ... 11-2
DisableACfail ..11-3
DisableSoftReset ... 11-4
DisableSysfail..11-5
DisableSysreset ... 11-6
EnableACfail ... 11-7
EnableSoftReset ..11-8
EnableSysfail... 11-9
EnableSysreset... 11-10
GetACfailHandler ... 11-11
GetBusErrorHandler..11-12
GetSoftResetHandler... 11-13
GetSysfailHandler ... 11-14
GetSysresetHandler ... 11-15
SetACfailHandler ..11-16
SetBusErrorHandler ..11-17
SetSoftResetHandler ... 11-18
SetSysfailHandler ..11-19
SetSysresetHandler..11-20

Default Handlers for the System Interrupt Handler Functions ..11-21
DefaultACfailHandler ... 11-21
DefaultBusErrorHandler ... 11-22
DefaultSoftResetHandler... 11-23
DefaultSysfailHandler ... 11-24
DefaultSysresetHandler... 11-25

Chapter 12
VXIbus Extender Functions... 12-1

MapECLtrig... 12-2
MapTTLtrig... 12-3
MapUtilBus ... 12-4
MapVXIint ..12-5

Contents

© National Instruments Corporation ix LabWindows VXI Library Reference Manual

Appendix
Customer Communication ...Appendix-1

Glossary..Glossary-1

Index ..Index-1

Tables

Table 1-1. LabWindows Directories ... 1-1
Table 1-2. The VXI Library Function Tree... 1-2
Table 1-3. Standalone C Functions ... 1-6
Table 1-4. Old VXI Trigger Functions.. 1-7

© National Instruments Corporation xi LabWindows VXI Library Reference Manual

About This Manual

The LabWindows VXI Library Reference Manual describes the functions in the LabWindows VXI Library. The
LabWindows VXI Library Reference Manual is intended for use by VXI users who are familiar with LabWindows
and DOS fundamentals. This manual assumes that you are familiar with the material presented in the LabWindows
User Manual, that LabWindows is already installed on your computer, and that you are familiar with the
LabWindows software. Please refer to the LabWindows User Manual for specific instructions on operating
LabWindows.

Organization of This Manual
The LabWindows VXI Library Reference Manual is organized as follows:

• Chapter 1, VXI Library Overview, contains information about the VXI Library package, a brief product
overview, the procedure for installing the VXI Library, and general information about the VXI Library
functions and panels. We recommend that you begin by reading this section before using the VXI Library.

• Chapter 2, System Configuration Functions, describes the functions in the LabWindows VXI System
Configuration Library. LabWindows uses these functions to copy all of the Resource Manager (RM) table
information into data structures at startup so that you can find device names or logical addresses by specifying
certain attributes of the device for identification purposes. The descriptions are explained in both BASIC and C
syntax, and are arranged alphabetically.

• Chapter 3, Commander Word Serial Protocol Functions, describes the functions in the LabWindows VXI
Commander Word Serial Protocol Library. Word Serial communication is the minimal mode of
communication between VXI Message-Based devices within the VXI Commander/Servant hierarchy.
Commander Word Serial functions let the local CPU (the CPU on which the NI-VXI interface resides) perform
VXI Message-Based Commander Word Serial communication with its Servants. The descriptions are explained
in both BASIC and C syntax, and are arranged alphabetically.

• Chapter 4, Servant Word Serial Protocol Functions, describes the functions in the LabWindows VXI Servant
Word Serial Protocol Library. Word Serial communication is the minimal mode of communication between
VXI Message-Based devices within the VXI Commander/Servant hierarchy. The local CPU (the CPU on
which the NI-VXI functions are running) uses the Servant Word Serial functions to perform VXI Message-
Based Servant Word Serial communication with its Commander. The descriptions are explained in both BASIC
and C syntax, and are arranged alphabetically.

• Chapter 5, Low-Level VXIbus Access Functions, describes the functions in the LabWindows VXI Low-Level
VXIbus Access Library. Low-level VXIbus access is the fastest access method for directly reading from or
writing to any of the VXIbus address spaces. The descriptions are explained in both BASIC and C syntax, and
are arranged alphabetically.

• Chapter 6, High-Level VXIbus Access Functions, describes the functions in the LabWindows VXI High-Level
VXIbus Access Library. With high-level VXIbus access functions, you have direct access to the VXIbus
address spaces. You can use these functions to read, write, and move blocks of data between any of the VXIbus
address spaces. When execution speed is not a critical issue, these functions provide an easy-to-use interface.
The descriptions are explained in both BASIC and C syntax, and are arranged alphabetically.

About This Manual

LabWindows VXI Library Reference Manual xii © National Instruments Corporation

• Chapter 7, Local Resource Access Functions, describes the functions in the LabWindows VXI Local Resource
Access Library. With these functions, you have access to miscellaneous local resources such as the local CPU
VXI register set, Slot 0 MODID operations, and the local CPU VXI Shared RAM. These functions are useful
for shared memory type communication, non-Resource Manager operation, and debugging purposes. The
descriptions are explained in both BASIC and C syntax, and are arranged alphabetically.

• Chapter 8, VXI Signal Functions, describes the functions in the LabWindows VXI Signal Library. With these
functions, VXI bus master devices can interrupt another device. VXI signal functions can specify the signal
routing, manipulate the global signal queue, and wait for a particular signal value (or set of values) to be
received. The descriptions are explained in both BASIC and C syntax, and are arranged alphabetically.

• Chapter 9, VXI Interrupt Functions, describes the functions in the LabWindows VXI Interrupt Library. VXI
interrupts are a basic form of asynchronous communication used by VXI devices with VXI interrupter support.
These functions can specify the status/ID processing method, install interrupt service routines, and assert
specified VXI interrupt lines with a specified status/ID value. The descriptions are explained in both BASIC
and C syntax, and are arranged alphabetically.

• Chapter 10, VXI Trigger Functions, describes the functions in the LabWindows VXI Trigger Library. These
functions provide a standard interface to source and accept any of the VXIbus TTL or ECL trigger lines. VXI
trigger functions support all VXI-defined trigger protocols, with the actual capabilities dependent on the
specific hardware platform. The descriptions are explained in both BASIC and C syntax, and are arranged
alphabetically.

• Chapter 11, System Interrupt Handler Functions, describes functions in the LabWindows VXI System Interrupt
Handler Library. With these functions, you can handle miscellaneous system conditions that can occur in the
VXI environment. The descriptions are explained in both BASIC and C syntax, and are arranged
alphabetically.

• Chapter 12, VXIbus Extender Functions, describes functions in the LabWindows VXIbus Extender Library.
These functions can be used to dynamically reconfigure multi-mainframe transparent mapping of the VXI
interrupt and trigger lines and utility bus signals. The descriptions are explained in both BASIC and C syntax,
and are arranged alphabetically.

• The Appendix, Customer Communication, contains forms for you to complete to facilitate communication with
National Instruments concerning our products.

• The Glossary contains an alphabetical list and description of terms used in this manual, including abbreviations,
acronyms, metric prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this manual, including the page where you can
find each one.

Conventions Used in This Manual
Throughout this manual, the following conventions are used to distinguish elements of text:

italic Italic text denotes emphasis, a cross reference, or an introduction to a key concept. In
this manual, italics are also used to denote Word Serial commands, queries, and signals.

monospace Lowercase text in this font denotes text or characters that are to be literally input from the
keyboard, sections of code, programming examples, and syntax examples. This font is
also used for the proper names of disk drives, paths, directories, programs, device names,
VXI function names, variables, parameters, filenames, and extensions, and for statements
and comments taken from program code.

About This Manual

© National Instruments Corporation xiii LabWindows VXI Library Reference Manual

Numbers in this manual are base 10 unless noted as follows:

• Binary numbers are indicated by a -b suffix (for example, 11010101b).

• Hexadecimal numbers are indicated by an -h suffix (for example, D5h).

• ASCII character and string values are indicated by double quotation marks (for example, "This is a string").

Terminology that is specific to a chapter or section is defined at its first occurrence.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in the Glossary.

Related Documentation
The following documents contain information that you may find helpful as you read this manual:

• NI-VXI Software Reference Manual for C, National Instruments part number 320307-01

• NI-VXI Software Reference Manual for BASIC, National Instruments part number 320328-01

• IEEE Standard for a Versatile Backplane Bus: VMEbus, ANSI/IEEE Standard 1014-1987

• VXI-1, VXIbus System Specification, Revision 1.3, VXIbus Consortium

• VXI-6, VXIbus Mainframe Extender Specification, Revision 1.0, VXIbus Consortium

Customer Communication
National Instruments wants to receive your comments on our products and manuals. We are interested in the
applications you develop with our products, and we want to help if you have problems with them. To make it easy
for you to contact us, this manual contains comment and configuration forms for you to complete. These forms are
in the appendix, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 LabWindows VXI Library Reference Manual

Chapter 1
VXI Library Overview

This chapter contains information about the LabWindows for DOS VXI Library package, a brief product overview,
the procedure for installing the VXI Library, and general information about the VXI Library functions and panels.

You should use this manual in conjunction with the NI-VXI software reference manual, either for C or for BASIC,
that was shipped with your VXI hardware. Before you use the VXI Library, National Instruments recommends that
you read this chapter, the VXI.DOC readme file in the LabWindows directory, and both Chapter 1, Introduction to
VXI, and Chapter 2, Introduction to NI-VXI Functions, in your NI-VXI C or BASIC software reference manual.

The LabWindows VXI Library Package
The LabWindows VXI Library software package consists of one 5.25 in. or one 3.5 in. diskette and one manual, the
LabWindows VXI Library Reference Manual, part number 320318-01.

Please review the contents of the package and contact National Instruments if anything is missing.

The LabWindows VXI Library package contains a Customer Registration Form. Please fill out this form and return
it to National Instruments. This will entitle you to receive product upgrades and technical support.

Installing the VXI Library
Begin by making a backup copy of the LabWindows VXI distribution disk. Copy the disk onto a backup disk and
store the distribution disk in a safe place.

To install LabWindows on your hard disk, insert the LabWindows VXI Library Program Disk into your computer
and enter the following command at the DOS prompt:

x:\setup

where you replace x with the letter to indicate the disk drive you used.

The SETUP program prompts you for information, including the drive letter and directory in which you have
installed the standard LabWindows package. It also verifies that your disk has enough space to hold the
LabWindows VXI Library files.

As the SETUP program executes, it copies LabWindows files into the existing LabWindows directories. Table 1-1
shows the directories affected by SETUP.

Table 1-1. LabWindows Directories

Directory Name Contents

\LW System files
\LW\INCLUDE Include files associated with libraries
\LW\LIBRARY Library files for linking Microsoft C and BASIC programs
\LW\BORLAND Library files for linking Borland C programs

After SETUP has successfully executed, follow the software configuration steps outlined in the Getting Started
manual that came with your hardware.

VXI Library Overview Chapter 1

LabWindows VXI Library Reference Manual 1-2 © National Instruments Corporation

LabWindows VXI Library Overview
The LabWindows VXI Library is an interface to VXI instruments from LabWindows. The VXI Library includes
functions for Commander and Servant Word Serial Protocol, low-level and high-level VXIbus access, local resource
access, VXI signals, interrupts, and triggers, system interrupt handlers, and system configuration.

The VXI Library Functions

The VXI Library functions are grouped in a tree structure according to the types of operations performed. Table 1-2
shows the VXI Library function tree. Table 1-3 lists C functions that you can use in standalone C Programs and
.obj instrument programs inside the environment. See the LabWindows Instrument Library Developer’s Guide
(Part No. 320315-01) for more information on .obj instrument programs. Table 1-4 lists the names of older VXI
trigger functions that are available for backward compatibility.

Table 1-2. The VXI Library Function Tree

VXI
System Configuration Functions

Initialize VXI Library InitVXIlibrary
Close VXI Library CloseVXIlibrary
Find Device's Logical Address FindDevLA
Get Device Information, Long Integer FieldsGetDevInfoLong
Get Device Information, Short Integer FieldsGetDevInfoShort
Get Device Information, String fields GetDevInfoStr
Set Device Information, Long Integer Fields SetDevInfoLong
Set Device Information, Short Integer Fields SetDevInfoShort
Set Device Information, String Fields SetDevInfoStr
Create Device Information Entry CreateDevInfo

Commander Word Serial Protocol Functions
Read Series of Bytes/Characters WSrd
Read Series of Short Integers WSrdi
Read Series of Long Integers WSrdl
Read into a File WSrdf
Write Series of Bytes/Characters WSwrt
Write Series of Short Integers WSwrti
Write Series of Long Integers WSwrtl
Write from a File WSwrtf
Send Command WScmd
Retrieve Query Response WSresp
Send Trigger Command WStrg
Send Clear Command WSclr
Abort Operation WSabort
Send Longword Command WSLcmd
Retrieve Longword Query Response WSLresp
Send Extended Command WSEcmd
Set Timeout Value WSsetTmo
Get Timeout Value WSgetTmo

(continues)

Chapter 1 VXI Library Overview

© National Instruments Corporation 1-3 LabWindows VXI Library Reference Manual

Table 1-2. The VXI Library Function Tree (Continued)

Servant Word Serial Protocol Functions
Enable Servant-Side Interrupts WSSenable
Disable Servant-Side Interrupts WSSdisable
Accept Series of Bytes WSSrd
Accept Series of Shorts WSSrdi
Accept Series of Longs WSSrdl
Return Series of Bytes WSSwrt
Return Series of Shorts WSSwrti
Return Series of Longs WSSwrtl
No Response to Command WSSnoResp
Response to Query WSSsendResp
No Longword Response to Command WSSLnoResp
Longword Response to Query WSSLsendResp
Abort Servant Operation WSSabort
Generate Protocol Error GenProtError
Respond to Read Protocol Error RespProtError

Low-Level VXIbus Access Functions
Map VXI Address MapVXIAddress
Unmap VXI Address UnMapVXIAddress
Get Window Range GetWindowRange
Read Value VXIpeek
Write Value VXIpoke
Clear Bus Error ClearBusError
Save Context SaveContext
Restore Context RestoreContext
Set Context SetContext
Get Context GetContext
Set Access Privilege SetPrivilege
Get Access Privilege GetPrivilege
Set Byte/Word Order SetByteOrder
Get Byte/Word Order GetByteOrder
Get VXIbus Status, One Field GetVXIbusStatusInd

High-Level VXIbus Access Functions
Read Value VXIin
Write Value VXIout
Read VXI Register VXIinReg
Write VXI Register VXIoutReg
Move Buffer VXImove

Local Resource Access Functions
Get Local Logical Address GetMyLA
Read Local VXI Register VXIinLR
Write Local VXI Register VXIoutLR
Set MODID lines SetMODID
Read MODID lines ReadMODID
Allocate Local VXI Shared Memory VXImemAlloc
Free Local VXI Shared Memory VXImemFree
Update Local VXI Shared Memory VXImemCopy

(continues)

VXI Library Overview Chapter 1

LabWindows VXI Library Reference Manual 1-4 © National Instruments Corporation

Table 1-2. The VXI Library Function Tree (Continued)

VXI Signal Functions
Route Signals RouteSignal
Enable Signal Interrupts EnableSignalInt
Disable Signal Interrupts DisableSignalInt
Dequeue Signal SignalDeq
Enqueue Signal SignalEnq
Jam Signal SignalJam
Wait for Signal WaitForSignal

VXI Interrupt Functions
Route VXI Interrupts RouteVXIint
Enable VXI to Signal Interrupts EnableVXItoSignalInt
Disable VXI to Signal Interrupts DisableVXItoSignalInt
Enable VXI Interrupts EnableVXIint
Disable VXI Interrupts DisableVXIint
Acknowledge VXI Interrupt AcknowledgeVXIint
Assert VXI Interrupt Line AssertVXIint
Deassert VXI Interrupt Line DeAssertVXIint
Set VXI Interrupt Acknowledge Mode VXIintAcknowledgeMode

VXI Trigger Functions
Source Trigger SrcTrig
Enable Trigger Sensing EnableTrigSense
Disable Trigger Sensing DisableTrigSense
Acknowledge Trigger AcknowledgeTrig
Wait for Trigger WaitForTrig
Trigger Assert Configure TrigAssertConfig
Trigger Control Configure TrigCntrConfig
Trigger External Configure TrigExtConfig
Trigger Timer Configure TrigTickConfig
Map Trigger to Trigger MapTrigToTrig
Unmap Trigger to Trigger UnMapTrigToTrig

System Interrupt Handler Functions
Enable Sysfail Interrupts EnableSysfail
Disable Sysfail Interrupts DisableSysfail
Enable ACfail Interrupts EnableACfail
Disable ACfail Interrupts DisableACfail
Enable Sysreset Interrupts EnableSysreset
Disable Sysreset Interrupts DisableSysreset
Assert Sysreset AssertSysreset
Enable Soft Reset Interrupts EnableSoftReset
Disable Soft Reset Interrupts DisableSoftReset

VXIbus Extender Functions
Map VXI Interrupts on Extender MapVXIint
Map TTL Triggers on Extender MapTTLtrig
Map ECL Triggers on Extender MapECLtrig
Map Utility Bus Signals on Extender MapUtilBus

The first-level bold headings in the tree are the names of function classes. Function classes are groups of related
function panels. The second-level headings in plain text are the names of individual function panels. Each VXI
function panel generates one VXI function call. The names of the corresponding VXI function calls are in bold
italics to the right of the function panel names.

Chapter 1 VXI Library Overview

© National Instruments Corporation 1-5 LabWindows VXI Library Reference Manual

The classes in the function tree are described here:

• System Configuration is a class of function panels that configure the NI-VXI interface and retrieve
information from the Resource Manager table.

• Commander Word Serial Protocol is a class of function panels that perform the basic mode of
communication between VXI Message-Based devices within the Commander/Servant hierarchy. Specifically,
this class of function panels is used by the Commander device to communicate with its Servants. Longword
Serial and Extended Longword Serial Protocols are extensions to the Word Serial Protocol.

• Servant Word Serial Protocol is a class of function panels that perform the basic mode of communication
between VXI Message-Based devices within the Commander/Servant hierarchy. Specifically, this class of
function panels is used by Servant devices to communicate with the Commander. Longword Serial and
Extended Longword Serial Protocols are extensions to the Word Serial Protocol.

• Low-Level VXIbus Access is a class of function panels that perform operations requiring direct access to the
VXIbus.

• High-Level VXIbus Access is a class of function panels that perform operations requiring protected access to
the VXIbus.

• Local Resource Access is a class of function panels that control resources under direct control by the device on
which the software resides.

• VXI Signals is a class of function panels that perform basic asynchronous peer-to-peer communication used by
Message-Based devices. VXI signals can be either Response signals or Event signals. Response signals report
changes in Word Serial communication between a Servant and its Commander. Event signals inform another
device of other asynchronous changes. LabWindows can handle signals either in the interrupt service routine or
by using a dequeue function to get signals from a system queue. The signal handling mode can be individually
configured for each class of signal.

• VXI Interrupts is a class of functions panels that handle interrupts from one or more of the seven VXI
backplane interrupts. The usage of these interrupts is virtually the same as for signals.

• VXI Triggers is a class of function panels that accommodate all trigger lines and protocols for all TTL and
ECL VXI trigger lines.

• System Interrupt Handlers is a class of function panels that let you install interrupt service routines for the
system interrupt conditions. These conditions include Sysfail, ACfail, Sysreset, Bus Error, and Soft Reset
interrupts.

• VXIbus Extender is a class of function panels that set up the VXI extenders in a multiple-mainframe system.

The online help with each panel contains specific information about operating each function panel.

VXI Library Overview Chapter 1

LabWindows VXI Library Reference Manual 1-6 © National Instruments Corporation

Table 1-3 groups the VXI Library functions that are available in standalone C Programs and .obj instrument
programs inside the environment. See the LabWindows Instrument Library Developer’s Guide (Part No. 320315-01)
for more information on .obj instrument programs.

Table 1-3. Functions for use in C Programs, .obj files, or the LabWindows Run-Time System

System Configuration Functions
Get Device Information, All Fields GetDevInfo
Set Device Information, All fields SetDevInfo

Servant Word Serial Protocol Functions
Set Read Handler SetWSSrdHandler
Get Read Handler GetWSSrdHandler
Default Read Handler DefaultWSSrdHandler
Set Write Handler SetWSSwrtHandler
Get Write Handler GetWSSwrtHandler
Default Write Handler DefaultWSSwrtHandler
Set Command Handler SetWSScmdHandler
Get Command Handler GetWSScmdHandler
Default Command Handler DefaultWSScmdHandler
Set Longword Command Handler SetWSSLcmdHandler
Get Longword Command Handler GetWSSLcmdHandler
Default Longword Command Handler DefaultWSSLcmdHandler
Set Extended Longword Command Handler SetWSSEcmdHandler
Get Extended Longword Command Handler GetWSSEcmdHandler
Default Extended Longword Command Handler DefaultWSSEcmdHandler

Low-Level VXIbus Access Functions
Get VXIbus Status, All Information GetVXIbusStatus

VXI Signal Functions
Set Signal Handler SetSignalHandler
Get Signal Handler GetSignalHandler
Default Signal Handler DefaultSignalHandler

VXI Interrupt Functions
Set VXI Interrupt Handler SetVXIintHandler
Get VXI Interrupt Handler GetVXIintHandler
Default VXI Interrupt Handler DefaultVXIintHandler

VXI Trigger Functions
Set Trigger Handler SetTrigHandler
Get Trigger Handler GetTrigHandler
Default Trigger Handler DefaultTrigHandler
Default Trigger Handler 2 DefaultTrigHandler2

System Interrupt Handler Functions
Set Sysfail Handler SetSysfailHandler
Get Sysfail Handler GetSysfailHandler
Default Sysfail Handler DefaultSysfailHandler
Set ACfail Handler SetACfailHandler
Get ACfail Handler GetACfailHandler
Default ACfail Handler DefaultACfailHandler
Set Soft Reset Handler SetSoftResetHandler
Get Soft Reset Handler GetSoftResetHandler
Default Soft Reset Handler DefaultSoftResetHandler
Set Bus Error Handler SetBusErrorHandler
Get Bus Error Handler GetBusErrorHandler
Default Bus Error Handler DefaultBusErrorHandler
Set Sysreset Handler SetSysresetHandler
Get Sysreset Handler GetSysresetHandler
Default Sysreset Handler DefaultSysresetHandler

VXI Library Overview Chapter 1

LabWindows VXI Library Reference Manual 1-8 © National Instruments Corporation

Table 1-4 lists older names of VXI trigger functions for backward compatibility. If you are using an older version of
the NI-VXI software for LabWindows , you can use the following function names with the same parameters to
achieve the same results as the functions given in Chapter 10, VXI Trigger Functions. However, you should not use
these older function names in new or updated programs. Also keep in mind that the value of the line parameter in
the older functions is specific to TTL (0 to 7) or ECL (0 to 5). An asterisk (*) following a function name denotes
that the function is to be used only in standalone C programs.

Table 1-4. Old VXI Trigger Functions

Source TTL Trigger SrcTTLtrig
Enable TTL Sensing EnableTTLsense
Disable TTL Sensing DisableTTLsense
Set TTL Trigger Handler SetTTLtrigHandler *
Get TTL Trigger Handler GetTTLtrigHandler *
Default TTL Trigger Handler DefaultTTLtrigHandler *
Acknowledge TTL Trigger AcknowledgeTTLtrig
Wait for TTL Trigger WaitForTTLtrig
Source ECL Trigger SrcECLtrig
Enable ECL Sensing EnableECLsense
Disable ECL Sensing DisableECLsense
Set ECL Trigger Handler SetECLtrigHandler *
Get ECL Trigger Handler GetECLtrigHandler *
Default ECL Trigger Handler DefaultECLtrigHandler *
Acknowledge ECL Trigger AcknowledgeECLtrig
Wait for ECL Trigger WaitForECLtrig

Reporting Status Information

The functions in the VXI Library are supported through a set of global variables. These global variables are updated
by the VXI Library Device Configuration functions or by the default handlers associated with particular events.
Please refer to the entry of these functions in the following chapters for a complete description of the global
variables modified by each of them. You can view the global variable within LabWindows using the standard View
Variables command.

© National Instruments Corporation 2-1 LabWindows VXI Library Reference Manual

Chapter 2
System Configuration Functions

This chapter describes the functions in the LabWindows VXI System Configuration Library. LabWindows uses
these functions to copy all of the Resource Manager (RM) table information into data structures at startup so that
you can find device names or logical addresses by specifying certain attributes of the device for identification
purposes. The descriptions are explained in both BASIC and C syntax, and are arranged alphabetically.

The following 12 functions are described in this chapter:

• CloseVXIlibrary

• CreateDevInfo

• FindDevLA

• GetDevInfo

• GetDevInfoLong

• GetDevInfoShort

• GetDevInfoStr

• InitVXIlibrary

• SetDevInfo

• SetDevInfoLong

• SetDevInfoShort

• SetDevInfoStr

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-2 © National Instruments Corporation

CloseVXIlibrary

Syntax:

BASIC Syntax ret% = CloseVXIlibrary% ()

C Syntax ret = CloseVXIlibrary ()

Action: Disables interrupts and frees dynamic memory allocated for the internal device information table. This
function should be called before the application is exited.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = NI-VXI library closed successfully
1 = Successful; previous InitVXIlibrary calls

 still pending.
-1 = NI-VXI library not open

BASIC Example:
' NI-VXI application shell program.

ret% = InitVXIlibrary% ()
IF ret% < 0 THEN

' RM table memory allocation or file open failed.
END IF

' Application-specific program.

ret% = CloseVXIlibrary% ()

C Example:
/* NI-VXI application shell program. */

main()
{
int ret;

ret = InitVXIlibrary();
if (ret < 0)

/* RM table memory allocation or file open failed. */;

/*
Application-specific program.

*/

ret = CloseVXIlibrary();
}

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-3 LabWindows VXI Library Reference Manual

CreateDevInfo

Syntax:

BASIC Syntax ret% = CreateDevInfo% (la%)

C Syntax ret = CreateDevInfo (la)

Action: Allocates space in the device information table for a new entry with logical address la. It sets the fields
in the device information table for the entry to default values (null or unasserted values).

Remarks:
Input parameter:

la integer Logical address of device to create entry for

Return value:
ret integer Return Status

0 = Entry successfully created
-1 = la already exists
-2 = la out of range 0 to 511
-3 = Dynamic memory allocation failure

BASIC Example:
' Create a new entry for pseudo logical address 298.

la% = 298
ret% = CreateDevInfo% (la%)
IF ret% <> 0 THEN

' Error creating new entry.
END IF

C Example:
/* Create a new entry for pseudo logical address 298. */

intret;
intla;

la = 298;
ret = CreateDevInfo (la);
if (ret != 0)

/* Error creating new entry. */;

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-4 © National Instruments Corporation

FindDevLA

Syntax:

BASIC Syntax ret% = FindDevLA% (namepat$, manid%, modelcode%,
 devclass%, slot%, mainframe%, cmdrla%, la%)

C Syntax ret = FindDevLA (namepat, manid, modelcode,
 devclass, slot, mainframe, cmdrla, la)

Action: Finds a VXI device with the specified attributes in the device information table and returns its logical
address. If the namepat parameter is "" or any other attribute is -1, that attribute is not used in the
matching algorithm. For namepat, it accepts a partial name (for example, for a device with the name
GPIB-VXI it accepts GPI). If two or more devices match, it returns the logical address of the first
device found.

Remarks:
Input parameters:

namepat string Name pattern
manid integer VXI manufacturer ID number
modelcode integer Manufacturer's 12-bit model number
devclass integer Device class of the device

-1 = Any
0 = Memory Class device
1 = Extended Class device
2 = Message-Based device
3 = Register-Based device

slot integer Slot location of the device
mainframe integer Mainframe location of device (logical address of

extender)
cmdrla integer Commander's logical address

Output parameter:
la integer Logical address of the device found

Return value:
ret integer Return Status

0 = A device matching the specification was found
-1 = No device matching the specification was found

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-5 LabWindows VXI Library Reference Manual

BASIC Example:
' Find the logical address of a device with manid = &HFF6
' (National Instruments) and modelcode = &HFF (GPIB-VXI).

DIM namepat AS STRING * 13

namepat$ = ""
manid% = &HFF6
modelcode% = &HFF
devclass% = -1
mainframe% = -1
slot% = -1
cmdrla% = -1
ret% = FindDevLA% (namepat$, manid%, modelcode%, devclass%,

mainframe%, slot%, cmdrla%, la%)
IF ret% <> 0 THEN

' No device with manid = &HFF6 and modelcode = &HFF was found.
ELSE

' Device was found, logical address in la.
END IF

C Example:
/* Find the logical address of a device with manid = 0xff6 (National

Instruments) and modelcode = 0xff (GPIB-VXI). */

int ret;
char *namepat;
int manid;
int modelcode;
int devclass;
int mainframe;
int slot;
int cmdrla;
int la;

namepat = "";
manid = 0xff6;
modelcode = 0xff;
devclass = -1;
mainframe = -1;
slot = -1;
cmdrla = -1;
ret = FindDevLA (namepat, manid, modelcode, devclass, mainframe, slot,
cmdrla, &la);
if (ret != 0)

/* No device with manid = 0xff6 and modelcode = 0xff was found. */;
else

/* Device was found; logical address in la. */;

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-6 © National Instruments Corporation

GetDevInfo

Syntax:

BASIC Syntax none

C Syntax ret = GetDevInfo (la, field, fieldvalue)

Action: Gets device information about a specified device.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

la integer Logical address of device to get information about
field integer Field identification number

 Field Type Description

0 structRetrieve entire RM table entry for the
specified device (structure of all of the

following)
1 char[14] Device name
2 integer Commander's logical address
3 integer Mainframe
4 integer Slot
5 integer Manufacturer identification number
6 char[14] Manufacturer name
7 integer Model code
8 char[14] Model name
9 integer Device class

10 integer Extended subclass (if extended class device)
 11 integer Address space used

12 long Base of A24/A32 memory
13 long Size of A24/A32 memory
14 integer Memory type and access time
15 integer Bit vector list of VXI interrupter lines
16 integer Bit vector list of VXI interrupt handler lines
17 integer Mainframe extender, controller information

 Bits Description
 15 to 13 Reserved

12 1 = Child side extender
0 = Parent side extender

11 1 = Frame extender
0 = Not frame extender

10 1 = Extended controller
 9 1 = Embedded controller
 8 1 = External controller

7 to 0 Frame extender towards root frame
18 integer Asynchronous mode control state
19 integer Response enable state
20 integer Protocols supported
21 integer Capability/status flags
22 integer Status state (Pass/Fail, Ready/Not Ready)

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-7 LabWindows VXI Library Reference Manual

Output parameter:
fieldvalue void* Information for that field (size dependent on field)

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field specified

BASIC Example:
none

C Example:
/* Get the model code of a device at Logical Address 4. */

int ret;
int la;
int field;
int fieldvalue;

la = 4;
field = 7;
ret = GetDevInfo (la, field, &fieldvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-8 © National Instruments Corporation

GetDevInfoLong

Syntax:

BASIC Syntax ret% = GetDevInfoLong% (la%, field%, longvalue&)

C Syntax ret = GetDevInfoLong (la, field, longvalue)

Action: Gets information about a specified device from the device information table.

Remarks:
Input parameters:

la integer Logical address of device to get information about
field integer Field identification number

 Field Description

12 Base of A24/A32 memory
13 Size of A24/A32 memory

Output parameter:
longvalue long Information for that field

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

BASIC Example:
' Get the A24 base of a device at Logical Address 4.

la% = 4
field% = 12
ret% = GetDevInfoLong% (la%, field%, longvalue&)
IF ret% <> 0 THEN

' Invalid logical address or field specified.
END IF

C Example:
/* Get the A24 base of a device at Logical Address 4. */

int ret;
int la;
int field;
long longvalue;

la = 4;
field = 12;
ret = GetDevInfoLong (la, field, &longvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-9 LabWindows VXI Library Reference Manual

GetDevInfoShort

Syntax:

BASIC Syntax ret% = GetDevInfoShort% (la%, field%, shortvalue%)

C Syntax ret = GetDevInfoShort (la, field, shortvalue)

Action: Gets information about a specified device from the device information table.

Remarks:
Input parameters:

la integer Logical address of device to get information about
field integer Field identification number

 Field Description

2 Commander's logical address
3 Mainframe
4 Slot
5 Manufacturer identification number
7 Model code
9 Device class

10 Extended subclass (if extended class device)
 11 Address space used

14 Memory type and access time
15 Bit vector list of VXI interrupter lines
16 Bit vector list of VXI interrupt handler lines
17 Mainframe extender and controller information

 Bits Description
15 to 13 Reserved

12 1 = Child side extender
0 = Parent side extender

11 1 = Frame extender
0 = Not frame extender

10 1 = Extended controller
9 1 = Embedded controller
8 1 = External controller

7 to 0 Frame extender towards root frame
18 Asynchronous mode control state
19 Response enable state
20 Protocols supported
21 Capability/status flags
22 Status state (Passed/Failed, Ready/Not Ready)

Output parameter:
shortvalue integer Information for that field

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-10 © National Instruments Corporation

BASIC Example:
' Get the model code of a device at Logical Address 4.

la% = 4
field% = 7
ret% = GetDevInfoShort% (la%, field%, shortvalue%)
IF ret% <> 0 THEN

' Invalid logical address or field specified.
END IF

C Example:
/* Get the model code of a device at Logical Address 4. */

int ret;
int la;
int field;
int shortvalue;

la = 4;
field = 7;
ret = GetDevInfoShort (la, field, &shortvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-11 LabWindows VXI Library Reference Manual

GetDevInfoStr

Syntax:

BASIC Syntax ret% = GetDevInfoStr% (la%, field%, stringvalue$)

C Syntax ret = GetDevInfoStr (la, field, stringvalue)

Action: Gets information about a specified device from the device information table.

Remarks:
Input parameters:

la integer Logical address of device to get information about
field integer Field identification number

 Field Description

1 Device name
6 Manufacturer name
8 Model name

Output parameter:
stringvalue string Buffer to receive information for that field

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

BASIC Example:
' Get the model name of a device at Logical Address 4.

DIM stringvalue AS STRING * 14

la% = 4
field% = 8
ret% = GetDevInfoStr% (la%, field%, stringvalue$)
IF ret% <> 0 THEN

' Invalid logical address or field specified.
ENDIF

C Example:
/* Get the model name of a device at Logical Address 4. */

int ret;
int la;
int field;
char stringvalue[14];

la = 4;
field = 8;
ret = GetDevInfoStr (la, field, stringvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-12 © National Instruments Corporation

InitVXIlibrary

Syntax:

BASIC Syntax ret% = InitVXIlibrary% ()

C Syntax ret = InitVXIlibrary ()

Action: Allocates and initializes the data structures required by the NI-VXI library functions. This function reads
the RM table file and copies all of the device information into data structures in local memory. It also
performs other initialization operations, such as installing the default interrupt handlers and initializing
their associated global variables.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = NI-VXI library initialized
1 = NI-VXI library already initialized (repeat call)

-1 = NI-VXI library initialization failed

BASIC Example:
' NI-VXI application shell program.

ret% = InitVXIlibrary% ()
IF ret% < 0 THEN

' RM table memory allocation or file open failed.
END IF

' Application-specific program.

ret% = CloseVXIlibrary% ()

C Example:
/* NI-VXI application shell program. */

main()
{

int ret;

ret = InitVXIlibrary();
if (ret < 0)

/* RM table memory allocation or file open failed. */;

/*
Application-specific program.

*/

ret = CloseVXIlibrary();
}

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-13 LabWindows VXI Library Reference Manual

SetDevInfo

Syntax:

BASIC Syntax none

C Syntax ret = SetDevInfo (la, field, fieldvalue)

Action: Sets information about a specified device in the device information table.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

la integer Logical address of device to set information for
field integer Field identification number

 Field Type Description

0 structRetrieve entire RM table entry for the
specified device (structure of all of the

following)
1 char[14] Device name
2 integer Commander's logical address
3 integer Mainframe
4 integer Slot
5 integer Manufacturer identification number
6 char[14] Manufacturer name
7 integer Model code
8 char[14] Model name
9 integer Device class

10 integer Extended subclass (if extended class device)
 11 integer Address space used

12 long Base of A24/A32 memory
13 long Size of A24/A32 memory
14 integer Memory type and access time
15 integer Bit vector list of VXI interrupter lines
16 integer Bit vector list of VXI interrupt handler lines
17 integer Mainframe extender, controller information

 Bits Description
15 to 13 Reserved

12 1 = Child side extender
0 = Parent side extender

11 1 = Frame extender
0 = Not frame extender

10 1 = Extended controller
9 1 = Embedded controller
8 1 = External controller

 7 to 0 Frame extender towards root frame
18 integer Asynchronous mode control state
19 integer Response enable state
20 integer Protocols supported
21 integer Capability/status flags
22 integer Status state (Pass/Fail, Ready/Not Ready)

fieldvalue void Information for that field (size dependent on field)

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-14 © National Instruments Corporation

Output parameters:
none

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field specified

BASIC Example:
none

C Example:
/* Set the model code of a device at Logical Address 4. */

int ret;
int la;
int field;
long fieldvalue;

la = 4;
field = 7;
fieldvalue = 0xffffL;
ret = SetDevInfo (la, field, &fieldvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-15 LabWindows VXI Library Reference Manual

SetDevInfoLong

Syntax:

BASIC Syntax ret% = SetDevInfoLong% (la%, field%, longvalue&)

C Syntax ret = SetDevInfoLong (la, field, longvalue)

Action: Sets information about a specified device in the device information table.

Remarks:
Input parameters:

la integer Logical address of device to set information for
field integer Field identification number

 Field Description

12 Base of A24/A32 memory
13 Size of A24/A32 memory

longvalue long Information for that field

Output parameters:
none

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

BASIC Example:
' Set the A24 base of a device at Logical Address 4.

la% = 4
field% = 12
longvalue& = &H200000&
ret% = SetDevInfoLong% (la%, field%, longvalue&)
IF ret% <> 0 THEN

' Invalid logical address or field specified.
END IF

C Example:
/* Set the A24 base of a device at Logical Address 4. */
int ret;
int la;
int field;
long longvalue;

la = 4;
field = 12;
longvalue = 0x200000L;
ret = SetDevInfoLong (la, field, longvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-16 © National Instruments Corporation

SetDevInfoShort

Syntax:

BASIC Syntax ret% = SetDevInfoShort% (la%, field%, shortvalue%)

C Syntax ret = SetDevInfoShort (la, field, shortvalue)

Action: Sets information about a specified device in the device information table.

Remarks:
Input parameters:

la integer Logical address of device to set information for
field integer Field identification number

 Field Description

2 Commander's logical address
3 Mainframe
4 Slot
5 Manufacturer identification number
7 Model code
9 Device class

10 Extended subclass (if extended class device)
 11 Address space used

14 Memory type and access time
15 Bit vector list of VXI interrupter lines
16 Bit vector list of VXI interrupt handler lines
17 Mainframe extender and controller information

 Bits Description
15 to 13 Reserved

12 1 = Child side extender
0 = Parent side extender

11 1 = Frame extender
0 = Not frame extender

10 1 = Extended controller
9 1 = Embedded controller
8 1 = External controller

 7 to 0 Frame extender towards root frame
18 Asynchronous mode control state
19 Response enable state
20 Protocols supported
21 Capability/status flags
22 Status state (Passed/Failed, Ready/Not Ready)

shortvalue integer Information for that field

Output parameters:
none

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-17 LabWindows VXI Library Reference Manual

BASIC Example:
' Set the model code of a device at Logical Address 4.

la% = 4
field% = 7
shortvalue% = &HFFFF
ret% = SetDevInfoShort% (la%, field%, shortvalue%)
IF ret% <> 0 THEN

' Invalid logical address or field specified.
END IF

C Example:
/* Set the model code of a device at Logical Address 4. */

int ret;
int la;
int field;
int shortvalue;

la = 4;
field = 7;
shortvalue = 0xffff;
ret = SetDevInfoShort (la, field, shortvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 2

LabWindows VXI Library Reference Manual 2-18 © National Instruments Corporation

SetDevInfoStr

Syntax:

BASIC Syntax ret% = SetDevInfoStr% (la%, field%, stringvalue$)

C Syntax ret = SetDevInfoStr (la, field, stringvalue)

Action: Sets information about a specified device in the device information table.

Remarks:
Input parameters:

la integer Logical address of device to set information for
field integer Field identification number

 Field Description

1 Device name
6 Manufacturer name
8 Model name

stringvalue string Buffer to set the information for that field

Output parameters:
none

Return value:
ret integer Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

BASIC Example:
' Set the model name of a device at Logical Address 4.

la% = 4
field% = 8
stringvalue$ = "DMM0"
ret% = SetDevInfoStr% (la%, field%, stringvalue$)
IF ret% <> 0 THEN

' Invalid logical address or field specified.
END IF

Chapter 2 System Configuration Functions

© National Instruments Corporation 2-19 LabWindows VXI Library Reference Manual

C Example:
/* Set the model name of a device at Logical Address 4. */

int ret;
int la;
int field;
char stringvalue[14];

la = 4;
field = 8;
strcpy (stringvalue, "DMM0");
ret = SetDevInfoStr (la, field, stringvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

© National Instruments Corporation 3-1 LabWindows VXI Library Reference Manual

Chapter 3
Commander Word Serial Protocol Functions

This chapter describes the functions in the LabWindows VXI Commander Word Serial Protocol Library. Word
Serial communication is the minimal mode of communication between VXI Message-Based devices within the VXI
Commander/Servant hierarchy. Commander Word Serial functions let the local CPU (the CPU on which the
NI VXI interface resides) perform VXI Message-Based Commander Word Serial communication with its Servants.
The descriptions are explained in both BASIC and C syntax, and are arranged alphabetically.

The following 18 functions are described in this chapter:

• WSabort

• WSclr

• WScmd

• WSEcmd

• WSgetTmo

• WSLcmd

• WSLresp

• WSrd

• WSrdf

• WSrdi

• WSrdl

• WSresp

• WSsetTmo

• WStrg

• WSwrt

• WSwrtf

• WSwrti

• WSwrtl

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-2 © National Instruments Corporation

WSabort

Syntax:

BASIC Syntax ret% = WSabort% (la%, abortop%)

C Syntax ret = WSabort (la, abortop)

Action: Performs a Forced or Unrecognized (Unsupported) Command abort of a Commander Word Serial
operation(s) in progress.

Remarks:
Input parameters:

la integer Logical address of the Message-Based device
abortop integer The operation to abort

1 = Forced Abort: aborts WSwrt, WSrd, and
WStrg

2 = UnSupCom: aborts WScmd, WSLcmd, and WSEcmd
3 = Forced Abort: aborts WScmd, WSLcmd, and

WSEcmd
4 = Forced Abort: aborts all Word Serial operations
5 = Async Abort: aborts all Word Serial operations

immediately. Be careful when using this option.
During a Word Serial query, the Servant may be left
in an invalid state if the operation is aborted after
writing the query and before reading the response
register. When using this option, the Word Serial
operation aborts immediately as compared to using
options 1, 3, and 4, where the operation does not
abort until reading the response.

Output parameters:
none

Return value:
ret integer Return Status

 0 = Successfully aborted
-1 = Invalid la
-2 = Invalid abortop

BASIC Example:
' Perform Unsupported Command abort on Logical Address 5.

la% = 5
abortop% = 2
ret% = WSabort% (la%, abortop%)
IF ret% < 0 THEN

' An error occurred during WSabort.
END IF

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-3 LabWindows VXI Library Reference Manual

C Example:
/* Perform Unsupported Command abort on Logical Address 5. */

int ret;
int la;
int abortop;

la = 5;
abortop = 2;
ret = WSabort (la, abortop);
if (ret < 0)

/* An error occurred during WSabort. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-4 © National Instruments Corporation

WSclr

Syntax:

BASIC Syntax ret% = WSclr% (la%)

C Syntax ret = WSclr (la)

Action: Sends the Word Serial Clear command to a Message-Based device.

Remarks:
Input parameter:

la integer Logical address of the Message-Based device

Output parameters:
none

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
7 BERR Bus error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_DONE Timed out before WR set (clear complete)
1 TIMO_SEND Timed out before able to send Clear

 Successful Transfer (Bit 15 = 0)
0 IODONE Command transfer successfully completed

BASIC Example:
' Send Clear command to Logical Address 5.

la% = 5
ret% = WSclr% (la%)
IF ret% < 0 THEN

' An error occurred during the command transfer.
END IF

C Example:
/* Send Clear command to Logical Address 5. */

int ret;
int la;

la = 5;
ret = WSclr (la);
if (ret < 0)

/* An error occurred during the command transfer. */;

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-5 LabWindows VXI Library Reference Manual

WScmd

Syntax:

BASIC Syntax ret% = WScmd% (la%, cmd%, respflag%, response%)

C Syntax ret = WScmd (la, cmd, respflag, response)

Action: Sends a Word Serial command or query to a Message-Based device.

Remarks:
Input parameters:

la integer Logical address of the Message-Based device
cmd integer Word Serial command value
respflag integer Non-0 = Get a response (query)

0 = Do not get a response

Output parameter:
response integer 16-bit location to store response

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)
0 IODONE Command transfer successfully completed

BASIC Example:
' Send the Word Serial command Read STB to a device at Logical
' Address 5, and get the response.

la% = 5
cmd% = &HCFFF
respflag% = 1
ret% = WScmd% (la%, cmd%, respflag%, response%)
IF ret% < 0 THEN

' Error occurred during WS command transfer.
END IF

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-6 © National Instruments Corporation

C Example:
/* Send the Word Serial command Read STB to a device at Logical Address 5,

and get the response. */

int ret;
int la;
int cmd;
int respflag;
int response;

la = 5;
cmd = 0xcfff;
respflag = 1;
ret = WScmd (la, cmd, respflag, &response);
if (ret < 0)

/* Error occurred during WS command transfer. */;

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-7 LabWindows VXI Library Reference Manual

WSEcmd

Syntax:

BASIC Syntax ret% = WSEcmd% (la%, cmdExt%, cmd&, respflag%,
 response&)

C Syntax ret = WSEcmd (la, cmdExt, cmd, respflag, response)

Action: Sends an Extended Longword Serial command or query to a Message-Based device.

Remarks:
Input parameters:

la integer Logical address of the Message-Based device
cmdExt integer Upper 16 bits of 48-bit Extended Longword Serial

command value
cmd long Lower 32 bits of 48-bit Extended Longword Serial

command value
respflag integer Non-0 = Get a response (query)

0 = Do not get a response

Output parameter:
response long 32-bit location to store response

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)
0 IODONE Command transfer successfully completed

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-8 © National Instruments Corporation

BASIC Example:
' Send the Extended Longword Serial command FFFCFFFDFFFE hex to a device at
' Logical Address 5, and get the response.

la% = 5
cmdExt% = &HFFFC
cmd& = &HFFFDFFFE&
respflag% = 1
ret% = WSEcmd% (la%, cmdExt%, cmd&, respflag%, response&)
IF ret% < 0 THEN

' Error occurred during command transfer.
END IF

C Example:
/* Send the Extended Longword Serial command FFFCFFFDFFFE hex to a device

at Logical Address 5, and get the response. */

int ret;
int la;
int cmdExt;
long cmd;
int respflag;
long response;

la = 5;
cmdExt = 0xfffc;
cmd = 0xfffdfffeL;
respflag = 1;
ret = WSEcmd (la, cmdExt, cmd, respflag, &response);
if (ret < 0)

/* Error occurred during command transfer. */;

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-9 LabWindows VXI Library Reference Manual

WSgetTmo

Syntax:

BASIC Syntax ret% = WSgetTmo% (actualtimo&)

C Syntax ret = WSgetTmo(actualtimo)

Action: Gets the actual time period to wait before aborting a Word Serial, Longword Serial, or Extended
Longword Serial Protocol transfer.

Remarks:
Input parameters:

none

Output parameter:
actualtimo long Timeout period in milliseconds

Return value:
ret integer 0 = Successful

BASIC Example:
' Get the timeout period.

ret% = WSgetTmo% (actualtimo&)

C Example:
/* Get the timeout period. */

int ret;
long actualtimo;

ret = WSgetTmo(&actualtimo);

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-10 © National Instruments Corporation

WSLcmd

Syntax:

BASIC Syntax ret% = WSLcmd% (la%, cmd&, respflag%, response&)

C Syntax ret = WSLcmd (la, cmd, respflag, response)

Action: Sends a Longword Serial command or query to a Message-Based device.

Remarks:
Input parameters:

la integer Logical address of the Message-Based device
cmd long Longword Serial command value
respflag integer Non-0 = Get a response (query)

0 = Do not get a response

Output parameter:
response long 32-bit location to store response

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)
0 IODONE Command transfer successfully completed

BASIC Example:
' Send the Longword Serial command &HFFFCFFFD& to a device at Logical
' Address 5, and get the response.

la% = 5
cmd& = &HFFFCFFFD&
respflag% = 1
ret% = WSLcmd% (la%, cmd&, respflag%, response&)
IF ret% < 0 THEN

' Error occurred during command transfer.
END IF

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-11 LabWindows VXI Library Reference Manual

C Example:
/* Send the Longword Serial command 0xfffcfffd to a device at Logical

Address 5, and get the response. */

int ret;
int la;
long cmd;
int respflag;
long response;

la = 5;
cmd = 0xfffcfffdL;
respflag = 1;
ret = WSLcmd (la, cmd, respflag, &response);
if (ret < 0)

/* Error occurred during command transfer. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-12 © National Instruments Corporation

WSLresp

Syntax:

BASIC Syntax ret% = WSLresp% (la%, response&)

C Syntax ret = WSLresp (la, response)

Action: Retrieves a response to a previously sent Longword Serial Protocol query from a VXI Message-Based
device. WSLcmd can send a query and automatically read a response. However, if it is necessary to
break up the sending of the query and the reading of the response, you can use WSLcmd to send the query
without reading the response and use WSLresp to read the response.

Note: This function is intended for debug use only.

Remarks:
Input parameter:

la integer Logical address of the Message-Based device

Output parameter:
response long 32-bit location to store response

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received

 Successful Transfer (Bit 15 = 0)
0 IODONE Command transfer successfully completed

BASIC Example:
' Retrieve a response for a previously sent Longword Serial query from
' Logical Address 5.

la% = 5
ret% = WSLresp% (la%, response&)
IF ret% < 0 THEN

' Error occurred during transfer.
END IF

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-13 LabWindows VXI Library Reference Manual

C Example:
/* Retrieve a response for a previously sent Longword Serial query from

Logical Address 5. */

int ret;
int la;
long response;

la = 5;
ret = WSLresp (la, &response);
if (ret < 0)

/* Error occurred during transfer. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-14 © National Instruments Corporation

WSrd

Syntax:

BASIC Syntax ret% = WSrd% (la%, buf$, count&, modevalue%,
 retcount&)

C Syntax ret = WSrd (la, buf, count, modevalue, retcount)

Action: Transfers the specified number of data bytes from a Message-Based device into a specified local memory
buffer, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

la integer Logical address to read buffer from
count long Maximum number of bytes to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description
0 Not DOR

0 = Abort if not DOR
1 = Poll until DOR

1 END bit termination suppression
0 = Terminate transfer on END bit
1 = Do not terminate transfer on END

2 LF character termination
1 = Terminate transfer on LF bit
0 = Do not terminate transfer on LF

3 CR character termination
1 = Terminate transfer on CR bit
0 = Do not terminate transfer on CR

4 EOS character termination
1 = Terminate transfer on EOS bit
0 = Do not terminate transfer on EOS

8 to 15 EOS character (valid if EOS termination)

Output parameters:
buf string Read buffer
retcount long Number of bytes actually transferred

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-15 LabWindows VXI Library Reference Manual

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DOR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

BASIC Example:
' Read up to 30 bytes from a device at Logical Address 5. Poll until
' device is DOR. Terminate transfer on END bit only.

DIM buf AS STRING * 100
la% = 5
count& = 30&
modevalue% = &H0001 ' Poll until DOR, terminate transfer on END.
ret% = WSrd% (la%, buf$, count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer read.
END IF

C Example:
/* Read up to 30 bytes from a device at Logical Address 5. Poll until

device is DOR. Terminate transfer on END bit only. */

int ret;
int la;
char buf[100];
long count;
int modevalue;
long retcount;

la = 5;
count = 30L;
modevalue = 0x0001; /* Poll until DOR, terminate transfer on END. */
ret = WSrd (la, buf, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer read. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-16 © National Instruments Corporation

WSrdf

Syntax:

BASIC Syntax ret% = WSrdf% (la%, filename$, count&,
 modevalue%, retcount&)

C Syntax ret = WSrdf (la, filename, count, modevalue,
 retcount)

Action: Reads the specified number of data bytes from a Message-Based device and writes them to the specified
file, using the VXIbus Byte Transfer Protocol and standard file I/O.

Remarks:
Input parameters:

la integer Logical address to read buffer from
filename string Name of the file to read data into
count long Maximum number of bytes to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description
0 Not DOR

0 = Abort if not DOR
1 = Poll until DOR

1 END bit termination suppression
0 = Terminate transfer on END bit
1 = Do not terminate transfer on END

2 LF character termination
1 = Terminate transfer on LF bit
0 = Do not terminate transfer on LF

3 CR character termination
1 = Terminate transfer on CR bit
0 = Do not terminate transfer on CR

4 EOS character termination
1 = Terminate transfer on EOS bit
0 = Do not terminate transfer on EOS

8 to 15 EOS character (valid if EOS termination)
Output parameter:

retcount long Number of bytes actually transferred

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-17 LabWindows VXI Library Reference Manual

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O
1 FIOerr Error reading or writing file
0 FOPENerr Error opening file

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DOR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

BASIC Example:
' Read 16 kilobytes (&H4000) from a device at Logical Address 5 into a
' file called "rdfile.dat." Poll until device is DOR. Terminate the
' transfer on END bit or line feed (LF).

la% = 5
filename$ = "rdfile.dat"
count& = &H4000&
modevalue% = &H0005 ' Poll until DOR, terminate on END or LF.
ret% = WSrdf% (la%, filename$, count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer read into the file.
END IF

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-18 © National Instruments Corporation

C Example:
/* Read 16 kilobytes (0x4000) from a device at Logical Address 5 into a

file called "rdfile.dat." Poll until device is DOR. Terminate the
transfer on END bit or line feed (LF). */

int ret;
char *filename;
int la;
long count;
int modevalue;
long retcount;

la = 5;
filename = "rdfile.dat";
count = 0x4000L;
modevalue = 0x0005; /* Poll until DOR, terminate on END or LF. */
ret = WSrdf (la, filename, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer read into the file. */

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-19 LabWindows VXI Library Reference Manual

WSrdi

Syntax:

BASIC Syntax ret% = WSrdi% (la%, buf%(), count&, modevalue%,
 retcount&)

C Syntax ret = WSrdi (la, buf, count, modevalue, retcount)

Action: Transfers the specified number of integers from a Message-Based device into a specified local memory
buffer, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

la integer Logical address to read buffer from
count long Maximum number of integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description
0 Not DOR

0 = Abort if not DOR
1 = Poll until DOR

1 END bit termination suppression
0 = Terminate transfer on END bit
1 = Do not terminate transfer on END

2 LF character termination
1 = Terminate transfer on LF bit
0 = Do not terminate transfer on LF

3 CR character termination
1 = Terminate transfer on CR bit
0 = Do not terminate transfer on CR

4 EOS character termination
1 = Terminate transfer on EOS bit
0 = Do not terminate transfer on EOS

8 to 15 EOS character (valid if EOS termination)

Output parameters:
buf integer array Read buffer
retcount long Number of integers actually transferred

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-20 © National Instruments Corporation

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DOR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

BASIC Example:
' Read up to 30 integers from a device at Logical Address 5. Poll until
' device is DOR. Terminate transfer on END bit only.

DIM buf%(100)
la% = 5
count& = 30&
modevalue% = &H0001 ' Poll until DOR, terminate transfer on END.
ret% = WSrdi% (la%, buf%(), count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer read.
END IF

C Example:
/* Read up to 30 integers from a device at Logical Address 5. Poll until

device is DOR. Terminate transfer on END bit only. */

int ret;
int la;
int buf[100];
long count;
int modevalue;
long retcount;

la = 5;
count = 30L;
modevalue = 0x0001; /* Poll until DOR, terminate transfer on END. */
ret = WSrdi (la, buf, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer read. */;

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-21 LabWindows VXI Library Reference Manual

WSrdl

Syntax:

BASIC Syntax ret% = WSrdl% (la%, buf&(), count&, modevalue%,
 retcount&)

C Syntax ret = WSrdl (la, buf, count, modevalue, retcount)

Action: Transfers the specified number of long integers from a Message-Based device into a specified local
memory buffer, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

la integer Logical address to read buffer from
count long Maximum number of long integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description
0 Not DOR

0 = Abort if not DOR
1 = Poll until DOR

1 END bit termination suppression
0 = Terminate transfer on END bit
1 = Do not terminate transfer on END

2 LF character termination
1 = Terminate transfer on LF bit
0 = Do not terminate transfer on LF

3 CR character termination
1 = Terminate transfer on CR bit
0 = Do not terminate transfer on CR

4 EOS character termination
1 = Terminate transfer on EOS bit
0 = Do not terminate transfer on EOS

8 to 15 EOS character (valid if EOS termination)

Output parameters:
buf long array Read buffer
retcount long Number of long integers actually transferred

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-22 © National Instruments Corporation

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DOR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

BASIC Example:
' Read up to 30 long integers from a device at Logical Address 5.
' Poll until device is DOR. Terminate transfer on END bit only.

DIM buf&(100)
la% = 5
count& = 30&
modevalue% = &H0001 ' Poll until DOR, terminate transfer on END.
ret% = WSrdl% (la%, buf&(), count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer read.
END IF

C Example:
/* Read up to 30 long integers from a device at Logical Address 5.

Poll until device is DOR. Terminate transfer on END bit only. */

int ret;
int la;
long buf[100];
long count;
int modevalue;
long retcount;

la = 5;
count = 30L;
modevalue = 0x0001; /* Poll until DOR, terminate transfer on END. */
ret = WSrdl (la, buf, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer read. */;

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-23 LabWindows VXI Library Reference Manual

WSresp

Syntax:

BASIC Syntax ret% = WSresp% (la%, response%)

C Syntax ret = WSresp (la, response)

Action: Retrieves a response to a previously sent Word Serial Protocol query from a VXI Message-Based device.
WScmd can send a query and automatically read a response. However, if it is necessary to break up the
sending of the query and the reading of the response, you can use WScmd to send the query without
reading the response and use WSresp to read the response.

Note: This function is intended for debug use only.

Remarks:
Input parameter:

la integer Logical address of the Message-Based device

Output parameter:
response integer 16-bit location to store response

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received

 Successful Transfer (Bit 15 = 0)
0 IODONE Command transfer successfully completed

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-24 © National Instruments Corporation

BASIC Example:
' Send Read STB as a command and retrieve the response later.

la% = 5
cmd% = &HCFFF
respflag% = 0 ' Do NOT read response.
ret% = WScmd% (la%, cmd%, respflag%, response%)
IF ret% < 0 THEN

' Error occurred during WS command transfer.
ELSE

ret% = WSresp% (la%, response%)
IF ret% < 0 THEN
 ' Error occurred during response retrieval.
END IF

END IF

C Example:
/* Send Read STB as a command and retrieve the response later. */

int ret;
int la;
int cmd;
int respflag;
int response;

la = 5;
cmd = 0xcfff;
respflag = 0; /* Do NOT read response. */
ret = WScmd (la, cmd, respflag, &response);
if (ret < 0)

/* Error occurred during WS command transfer. */;
else (

ret = WSresp (la, &response);
if (ret < 0)

/* Error occurred during response retrieval. */;
}

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-25 LabWindows VXI Library Reference Manual

WSsetTmo

Syntax:

BASIC Syntax ret% = WSsetTmo% (timo&, actualtimo&)

C Syntax ret = WSsetTmo (timo, actualtimo)

Action: Sets the time period to wait before aborting a Word Serial, Longword Serial, or Extended Longword
Serial Protocol transfer. It returns the actual timeout value set (the nearest timeout period possible
greater than or equal to the timeout period specified).

Remarks:
Input parameter:

timo long Timeout period in milliseconds

Output parameter:
actualtimo long Actual timeout period set in milliseconds

Return value:
ret integer 0 = Successful

BASIC Example:
' Set the timeout period to 2 seconds.

timo& = 2000&
ret% = WSsetTmo% (timo&, actualtimo&)

C Example:
/* Set the timeout period to 2 seconds. */

int ret;
long timo;
long actualtimo;

timeout = 2000L;
ret = WSsetTmo (timo, &actualtimo);

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-26 © National Instruments Corporation

WStrg

Syntax:

BASIC Syntax ret% = WStrg% (la%)

C Syntax ret = WStrg (la)

Action: Sends the Word Serial Trigger command to a Message-Based device.

Remarks:
Input parameter:

la integer Logical address of the Message-Based device.

Output parameters:
none

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)
0 IODONE Command transfer successfully completed

BASIC Example:
' Send Trigger command to Logical Address 5.

la% = 5
ret% = WStrg% (la%)
IF ret% < 0 THEN

' An error occurred during the command transfer.
END IF

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-27 LabWindows VXI Library Reference Manual

C Example:
/* Send Trigger command to Logical Address 5. */

int ret;
int la;

la = 5;
ret = WStrg (la);
if (ret < 0)

/* An error occurred during the command transfer. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-28 © National Instruments Corporation

WSwrt

Syntax:

BASIC Syntax ret% = WSwrt% (la%, buf$, count&, modevalue%,
 retcount&)

C Syntax ret = WSwrt (la, buf, count, modevalue, retcount)

Action: Transfers the specified number of data bytes from a specified local memory buffer to a Message-Based
device, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

la integer VXI logical address to write buffer to
buf string Write buffer
count long Maximum number of bytes to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 0 = Abort if device is not DIR
1 = Poll until device is DIR

1 1 = Set END bit on the last byte of transfer
0 = Clear END bit on the last byte of transfer

Output parameter:
retcount long Number of bytes actually transferred

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DIR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-29 LabWindows VXI Library Reference Manual

BASIC Example:
' Write the 14-byte ASCII command "VXI:CONF:NUMB?" to a device at Logical
' Address 5. Poll until device is DIR, and send END with the last byte.

la% = 5
buf$ = "VXI:CONF:NUMB?"
count& = StringLength% (buf$)
modevalue% = &H0003 ' Poll until DIR; send END with last byte.
ret% = WSwrt% (la%, buf$, count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer write.
END IF

C Example:
/* Write the 14-byte ASCII command "VXI:CONF:NUMB?" to a device at

Logical Address 5. Poll until device is DIR, and send END with the last
byte. */

int ret;
int la;
char *buf;
long count;
int modevalue;
long retcount;

la = 5;
buf = "VXI:CONF:NUMB?";
count = StringLength(buf);
modevalue = 0x0003; /* Poll until DIR; send END with last byte. */
ret = WSwrt (la, buf, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer write. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-30 © National Instruments Corporation

WSwrtf

Syntax:

BASIC Syntax ret% = WSwrtf% (la%, filename$, count&,
 modevalue%, retcount&)

C Syntax ret = WSwrtf (la, filename, count, modevalue,
 retcount)

Action: Transfers up to the specified number of data bytes from the specified file to a Message-Based device,
using the VXIbus Byte Transfer Protocol and standard file I/O.

Remarks:
Input parameters:

la integer VXI logical address to write buffer to
filename string Name of the file to write data from
count long Maximum number of bytes to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 0 = Abort if device is not DIR
1 = Poll until device is DIR

1 1 = Set END bit on the last byte of transfer
0 = Clear END bit on the last byte of transfer

Output parameter:
retcount long Number of bytes actually transferred

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O
1 FIOerr Error reading or writing file
0 FOPENerr Error opening file

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DIR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-31 LabWindows VXI Library Reference Manual

BASIC Example:
' Write 16 kilobytes (&H4000&) to a device at Logical Address 5 from the
' file "wrtfile.dat." Poll until device is DIR, and send END with the
' last byte.

la% = 5
filename$ = "wrtfile.dat"
count& = &H4000&
modevalue% = &H0003 ' Send END, wait until DIR if not already DIR.
ret% = WSwrtf% (la%, filename$, count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer write.
END IF

C Example:
/* Write 16 kilobytes (0x4000) to a device at Logical Address 5 from the

file "wrtfile.dat." Poll until device is DIR, and send END with the
last byte. */

int ret;
char *filename;
int la;
long count;
int modevalue;
long retcount;

la = 5;
filename = "wrtfile.dat";
count = 0x4000L;
modevalue = 0x0003; /* Send END, wait until DIR if not already DIR. */
ret = WSwrtf (la, filename, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer write. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-32 © National Instruments Corporation

WSwrti

Syntax:

BASIC Syntax ret% = WSwrti% (la%, buf%(), count&, modevalue%,
 retcount&)

C Syntax ret = WSwrti (la, buf, count, modevalue, retcount)

Action: Transfers the specified number of integers from a specified local memory buffer to a Message-Based
device, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

la integer VXI logical address to write buffer to
buf integer array Write buffer
count long Maximum number of integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 0 = Abort if device is not DIR
1 = Poll until device is DIR

1 1 = Set END bit on the last byte of transfer
0 = Clear END bit on the last byte of transfer

Output parameter:
retcount long Number of integers actually transferred

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DIR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-33 LabWindows VXI Library Reference Manual

BASIC Example:
' Write an array containing binary short integer data to a device at
' Logical Address 5. Poll until device is DIR, and send END with the last
' byte.

DIM buf%(100)
CALL InitBuf (buf%()) ' Initialize buf with data.
la% = 5
count& = 14&
modevalue% = &H0003 ' Poll until DIR; send END with last byte.
ret% = WSwrti% (la%, buf%(), count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer write.
END IF

C Example:
/* Write an array containing binary short integer data to a device at

Logical Address 5. Poll until device is DIR, and send END with the
last byte. */

int ret;
int la;
int buf[100];
long count;
int modevalue;
long retcount;

la = 5;
InitBuf(buf); /* Initialize buf with data. */
count = StringLength(buf); /* Find the length of buf string. */
modevalue = 0x0003; /* Poll until DIR; send END with last byte. */
ret = WSwrti (la, buf, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer write. */;

Commander Word Serial Protocol Functions Chapter 3

LabWindows VXI Library Reference Manual 3-34 © National Instruments Corporation

WSwrtl

Syntax:

BASIC Syntax ret% = WSwrtl% (la%, buf&(), count&, modevalue%,
 retcount&)

C Syntax ret = WSwrtl (la, buf, count, modevalue, retcount)

Action: Transfers the specified number of long integers from a specified local memory buffer to a Message-
Based device, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

la integer VXI logical address to write buffer to
buf long array Write buffer
count long Maximum number of long integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 0 = Abort if device is not DIR
1 = Poll until device is DIR

1 1 = Set END bit on the last byte of transfer
0 = Clear END bit on the last byte of transfer

Output parameter:
retcount long Number of long integers actually transferred

Return value:
ret integer Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

 Successful Transfer (Bit 15 = 0)
3 DirDorAbort Transfer aborted–Device not DIR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

Chapter 3 Commander Word Serial Protocol Functions

© National Instruments Corporation 3-35 LabWindows VXI Library Reference Manual

BASIC Example:
' Write an array containing binary long integer data to a device at Logical
' Address 5. Poll until device is DIR, and send END with the last byte.

DIM buf&(100)
la% = 5
CALL InitBuf(buf&()) ' Initialize buf with data.
count& = 14
modevalue% = &H0003 ' Poll until DIR; send END with last byte.
ret% = WSwrtl% (la%, buf&(), count&, modevalue%, retcount&)
IF ret% < 0 THEN

' An error occurred during the buffer write.
END IF

C Example:
/* Write an array containing binary long integer data to a device at

Logical Address 5. Poll until device is DIR, and send END with the
last byte. */

int ret;
int la;
long buf[100];
long count;
int modevalue;
long retcount;

la = 5;
InitBuf(buf); /* Initialize buf with data. */
count = StringLength(buf); /* Find the length of buf string. */
modevalue = 0x0003; /* Poll until DIR; send END with last byte. */
ret = WSwrtl (la, buf, count, modevalue, &retcount);
if (ret < 0)

/* An error occurred during the buffer write. */;

© National Instruments Corporation 4-1 LabWindows VXI Library Reference Manual

Chapter 4
Servant Word Serial Protocol Functions

This chapter describes the functions in the LabWindows VXI Servant Word Serial Protocol Library. Word Serial
communication is the minimal mode of communication between VXI Message-Based devices within the VXI
Commander/Servant hierarchy. The local CPU (the CPU on which the NI-VXI functions are running) uses the
Servant Word Serial functions to perform VXI Message-Based Servant Word Serial communication with its
Commander. The descriptions are explained in both BASIC and C syntax, and are arranged alphabetically.

The following 25 functions are described in this chapter:

• GenProtError • WSSdisable

• GetWSScmdHandler • WSSenable

• GetWSSEcmdHandler • WSSLnoResp

• GetWSSLcmdHandler • WSSLsendResp

• GetWSSrdHandler • WSSnoResp

• GetWSSwrtHandler • WSSrd

• RespProtError • WSSrdi

• SetWSScmdHandler • WSSrdl

• SetWSSEcmdHandler • WSSsendResp

• SetWSSLcmdHandler • WSSwrt

• SetWSSrdHandler • WSSwrti

• SetWSSwrtHandler • WSSwrtl

• WSSabort

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-2 © National Instruments Corporation

GenProtError

Syntax:

BASIC Syntax ret% = GenProtError% (proterr%)

C Syntax ret = GenProtError (proterr)

Action: Generates a Word Serial protocol error if one is not already pending. It asserts the Response register bit
ERR* if the value of the protocol error, proterr, is not -1. If proterr is -1, it deasserts the ERR*
bit. If no previous error existed, it saves the proterr value for response to a future Read Protocol
Error query via the function RespProtError.

Remarks:
Input parameter:

proterr integer Protocol error to generate

 Value Protocol Error Description
-1 Clear any protocol error condition
-3 Multiple Query Error (MQE)
-4 Unsupported Command (UnSupCom)
-5 Data In Ready violation (DIRviol)
-6 Data Out Ready violation (DORviol)
-7 Read Ready violation (RRviol)
-8 Write Ready violation (WRviol)

others Reserved
Output parameters:

none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
' Generate a protocol error of DORviol.

proterr% = &HFFFA
ret% = GenProtError% (proterr%)
IF ret% < 0 THEN

' An error occurred in GenProtError.
END IF

C Example:
/* Generate a protocol error of DORviol. */

int ret;
int proterr;

proterr = 0xfffa;
ret = GenProtError (proterr);
if (ret < 0)

/* An error occurred in GenProtError. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-3 LabWindows VXI Library Reference Manual

GetWSScmdHandler

Syntax:

BASIC Syntax none

C Syntax func = GetWSScmdHandler()

Action: Returns the address of the current Servant Word Serial command interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func (*void)() Pointer to the new Servant Word Serial command

interrupt handler

BASIC Example:
none

C Example:

/* Get the address of the Servant Word Serial command interrupt
handler. */

void (*func)();

func = GetWSScmdHandler();

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-4 © National Instruments Corporation

GetWSSEcmdHandler

Syntax:

BASIC Syntax none

C Syntax func = GetWSSEcmdHandler()

Action: Returns the address of the current Servant Extended Longword Serial command interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func (*void)() Pointer to the new Servant Extended Longword Serial

command interrupt handler

BASIC Example:
none

C Example:
/* Get the address of the Servant Extended Longword Serial command

handler. */

void (*func)();

func = GetWSSEcmdHandler();

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-5 LabWindows VXI Library Reference Manual

GetWSSLcmdHandler

Syntax:

BASIC Syntax none

C Syntax func = GetWSSLcmdHandler()

Action: Returns the address of the current Servant Longword Serial command interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func (*void)() Pointer to the new Servant Longword Serial command

interrupt handler

BASIC Example:
none

C Example:
/* Get the address of the Servant Longword Serial command interrupt

handler. */

void (*func)();

func = GetWSSLcmdHandler();

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-6 © National Instruments Corporation

GetWSSrdHandler

Syntax:

BASIC Syntax none

C Syntax func = GetWSSrdHandler()

Action: Returns the address of the current WSSrd done notification interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func (*void)() Pointer to the current WSSrd done notification interrupt

handler

BASIC Example:
none

C Example:
/* Get the address of the WSSrd done notification handler. */

void (*func)();

func = GetWSSrdHandler();

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-7 LabWindows VXI Library Reference Manual

GetWSSwrtHandler

Syntax:

BASIC Syntax none

C Syntax func = GetWSSwrtHandler()

Action: Returns the address of the current WSSwrt done notification interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func (*void)() Pointer to the current WSSwrt done notification interrupt

handler

BASIC Example:
none

C Example:
/* Get the address of the WSSwrt done notification handler. */

void (*func)();

func = GetWSSwrtHandler();

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-8 © National Instruments Corporation

RespProtError

Syntax:

BASIC Syntax ret% = RespProtError% ()

C Syntax ret = RespProtError ()

Action: Responds to the Word Serial Read Protocol Error query with the last protocol error generated via the
GenProtError function, and then deasserts the ERR* bit.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported
-2 = Response is still pending and a multiple query

 error is generated

BASIC Example:
' Respond to the Word Serial Read Protocol Error query.

ret% = RespProtError% ()
IF ret% < 0 THEN

' An error occurred in RespProtError.
END IF

C Example:
/* Respond to the Word Serial Read Protocol Error query. */

int ret;

ret = RespProtError ();
if (ret < 0)

/* An error occurred in RespProtError. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-9 LabWindows VXI Library Reference Manual

SetWSScmdHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetWSScmdHandler (func)

Action: Replaces the current WSScmd interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func (*void)() Pointer to the new WSScmd interrupt handler
(NULL = DefaultWSScmdHandler)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
none

C Example:
/* Set the WSScmd interrupt handler. */

void func (int);
int ret;

ret = SetWSScmdHandler(func);

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-10 © National Instruments Corporation

SetWSSEcmdHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetWSSEcmdHandler (func)

Action: Replaces the current WSSEcmd interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func (*void)() Pointer to the new WSSEcmd interrupt handler
(NULL = DefaultWSSEcmdHandler)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
none

C Example:
/* Set the WSSEcmd interrupt handler. */

void func (int, long);
int ret;

ret = SetWSSEcmdHandler(func);

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-11 LabWindows VXI Library Reference Manual

SetWSSLcmdHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetWSSLcmdHandler (func)

Action: Replaces the current WSSLcmd interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func (*void)() Pointer to the new WSSLcmd interrupt handler
(NULL = DefaultWSSLcmdHandler)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
none

C Example:
/* Set the WSSLcmd interrupt handler. */

void func (long);
int ret;

ret = SetWSSLcmdHandler(func);

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-12 © National Instruments Corporation

SetWSSrdHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetWSSrdHandler (func)

Action: Replaces the current WSSrd done notification interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func (*void)() Pointer to the new WSSrd done notification handler
(NULL = DefaultWSSrdHandler)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
none

C Example:
/* Set the WSSrd done notification interrupt handler. */

void func (int, long);
int ret;

ret = SetWSSrdHandler(func);

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-13 LabWindows VXI Library Reference Manual

SetWSSwrtHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetWSSwrtHandler (func)

Action: Replaces the current WSSwrt done notification interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func (*void)() Pointer to the new WSSwrt done notification handler
(NULL = DefaultWSSwrtHandler)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
none

C Example:
/* Set the WSSwrt done notification interrupt handler. */

void func (int, long);
int ret;

ret = SetWSSwrtHandler(func);

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-14 © National Instruments Corporation

WSSabort

Syntax:

BASIC Syntax ret% = WSSabort% (abortop%)

C Syntax ret = WSSabort (abortop)

Action: Aborts the Servant Word Serial operation(s) in progress.

Remarks:
Input parameter:

abortop integer The operation to abort, bit vector

 Bit Description

0 = Abort WSSwrt
1 = Abort WSSrd
2 = Abort WSSsendResp

15 = Initialize Word Serial Servant hardware. This
 includes aborting all Word Serial operations,
 clearing out errors, removing all pending Word
 Serial Servant interrupts, and disabling the
 interrupts.

Output parameters:
none

Return value:
ret integer Return Status

0 = Successfully aborted
-1 = Servant Word Serial functions not supported
-2 = Unable to abort

BASIC Example:
' Abort WSSwrt.

abortop% = &H0001
ret% = WSSabort% (abortop%)
IF ret% < 0 THEN

' An error occurred during WSSabort.
END IF

C Example:
/* Abort WSSwrt. */

int ret;
int abortop;

abortop = (1<<0);
ret = WSSabort (abortop);
if (ret < 0)

/* An error occurred during WSSabort. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-15 LabWindows VXI Library Reference Manual

WSSdisable

Syntax:

BASIC Syntax ret% = WSSdisable% ()

C Syntax ret = WSSdisable ()

Action: Desensitizes the local CPU to interrupts generated when a Word Serial command is written to the Data
Low register or when a response is read from the Data Low register.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
' Disable all the Servant Word Serial functions.

ret% = WSSdisable% ()

C Example:
/* Disable all the Servant Word Serial functions. */

int ret;

ret = WSSdisable();

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-16 © National Instruments Corporation

WSSenable

Syntax:

BASIC Syntax ret% = WSSenable% ()

C Syntax ret = WSSenable ()

Action: Sensitizes the local CPU to interrupts generated when a Word Serial command is written to the Data Low
register or when a response is read from the Data Low register.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
' Enable all the Servant Word Serial functions.

ret% = WSSenable% ()

C Example:
/* Enable all the Servant Word Serial functions. */

int ret;

ret = WSSenable();

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-17 LabWindows VXI Library Reference Manual

WSSLnoResp

Syntax:

BASIC Syntax ret% = WSSLnoResp% ()

C Syntax ret = WSSLnoResp ()

Action: Acknowledges a received Longword Serial Protocol command that has no response and asserts the Write
Ready (WR) bit in the local CPU Response register. This function must be called after the processing of
a Longword Serial Protocol command (queries are responded to with WSSLsendResp).

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
' Acknowledge the reception of a Longword Serial Protocol command that
' has no response.

ret% = WSSLnoResp% ()
IF ret% < 0 THEN

' An error occurred during WSSLnoResp.
END IF

C Example:
/* Acknowledge the reception of a Longword Serial Protocol command that

has no response. */

int ret;

ret = WSSLnoResp ();
if (ret < 0)

/* An error occurred during WSSLnoResp. */;

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-18 © National Instruments Corporation

WSSLsendResp

Syntax:

BASIC Syntax ret% = WSSLsendResp% (response&)

C Syntax ret = WSSLsendResp (response)

Action: Responds to a received Longword Serial Protocol query with a response and asserts the WR bit (in
addition to the RR bit) in the local CPU Response register. This function must be called after the
processing of a Longword Serial Protocol query (commands are acknowledged with WSSLnoResp).

Remarks:
Input parameter:

response long 32-bit response

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported
-2 = Response still pending (MQE generated)

BASIC Example:
' Respond to a received Longword Serial Protocol query.

response& = &HFFFCFFFD&
ret% = WSSLsendResp% (response&)
IF ret% < 0 THEN

' An error occurred during WSSLsendResp.
END IF

C Example:
/* Respond to a received Longword Serial Protocol query. */

int ret;
long response;

response = 0xfffcfffdL;
ret = WSSLsendResp (response);
if (ret < 0)

/* An error occurred during WSSLsendResp. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-19 LabWindows VXI Library Reference Manual

WSSnoResp

Syntax:

BASIC Syntax ret% = WSSnoResp% ()

C Syntax ret = WSSnoResp ()

Action: Acknowledges a received Word Serial Protocol command that has no response and asserts the WR bit in
the local CPU Response register. This function must be called after the processing of a Word Serial
Protocol command (queries are responded to with WSSsendResp).

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

BASIC Example:
' Acknowledge the reception of a Word Serial Protocol command that has no
' response.

ret% = WSSnoResp% ()
IF ret% < 0 THEN

' An error occurred during WSSnoResp.
END IF

C Example:
/* Acknowledge the reception of a Word Serial Protocol command that has no

response. */

int ret;

ret = WSSnoResp ();
if (ret < 0)

/* An error occurred during WSSnoResp. */;

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-20 © National Instruments Corporation

WSSrd

Syntax:

BASIC Syntax ret% = WSSrd% (buf$, count&, modevalue%)

C Syntax ret = WSSrd (buf, count, modevalue)

Action: Posts a read operation to begin receiving the specified number of data bytes from a Message-Based
Commander into a specified memory buffer, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

count long Maximum number of bytes to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 DIR signal mode to Commander
0 = Do not send DIR signal to Commander
1 = Send DIR signal to Commander

15 to 1 Reserved (0)

Output parameter:
buf string Read buffer

Return value:
ret integer Return Status

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = Word Serial Servant read operation already

 in progress

BASIC Example:
' Read 10 bytes from the Commander.

DIM buf AS STRING * 100
count& = 10&
modevalue% = &H0000 ' Do not send DIR signal to Commander.
ret% = WSSrd% (buf$, count&, modevalue%)
IF ret% < 0 THEN

' An error occurred during WSSrd.
END IF

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-21 LabWindows VXI Library Reference Manual

C Example:
/* Read 10 bytes from the Commander. */

int ret;
char buf[100];
long count;
int modevalue;

count = 10L;
modevalue = 0x0000; /* Do not send DIR signal to Commander. */
ret = WSSrd (buf, count, modevalue);
if (ret < 0)

/* An error occurred during WSSrd. */;

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-22 © National Instruments Corporation

WSSrdi

Syntax:

BASIC Syntax ret% = WSSrdi% (buf%(), count&, modevalue%)

C Syntax ret = WSSrdi (buf, count, modevalue)

Action: Posts a read operation to begin receiving the specified number of integers from a Message-Based
Commander into a specified memory buffer, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

count long Maximum number of integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 DIR signal mode to Commander
0 = Do not send DIR signal to Commander
1 = Send DIR signal to Commander

15 to 1 Reserved (0)

Output parameter:
buf integer array Read buffer

Return value:
ret integer Return Status

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = Word Serial Servant read operation already

 in progress

BASIC Example:
' Read 10 integers from the Commander.

DIM buf%(100)
count& = 10&
modevalue% = &H0000 ' Do not send DIR signal to Commander.
ret% = WSSrdi% (buf%(), count&, modevalue%)
IF ret% < 0 THEN

' An error occurred during WSSrdi.
END IF

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-23 LabWindows VXI Library Reference Manual

C Example:
/* Read 10 integers from the Commander. */

int ret;
int buf[100];
long count;
int modevalue;

count = 10L;
modevalue = 0x0000; /* Do not send DIR signal to Commander. */
ret = WSSrdi (buf, count, modevalue);
if (ret < 0)

/* An error occurred during WSSrdi. */;

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-24 © National Instruments Corporation

WSSrdl

Syntax:

BASIC Syntax ret% = WSSrdl% (buf&(), count&, modevalue%)

C Syntax ret = WSSrdl (buf, count, modevalue)

Action: Posts a read operation to begin receiving the specified number of long integers from a Message-Based
Commander into a specified memory buffer, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

count long Maximum number of long integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 DIR signal mode to Commander
0 = Do not send DIR signal to Commander
1 = Send DIR signal to Commander

15 to 1 Reserved (0)

Output parameter:
buf long array Read buffer

Return value:
ret integer Return Status

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = Word Serial Servant read operation already

 in progress

BASIC Example:
' Read 10 long integers from the Commander.

DIM buf&(100)
count& = 10&
modevalue% = &H0000 ' Do not send DIR signal to Commander.
ret% = WSSrdl% (buf&(), count&, modevalue%)
IF ret% < 0 THEN

' An error occurred during WSSrdl.
END IF

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-25 LabWindows VXI Library Reference Manual

C Example:
/* Read 10 long integers from the Commander. */

int ret;
int buf[100];
long count;
int modevalue;

count = 10L;
modevalue = 0x0000; /* Do not send DIR signal to Commander. */
ret = WSSrdl (buf, count, modevalue);
if (ret < 0)

/* An error occurred during WSSrdl. */;

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-26 © National Instruments Corporation

WSSsendResp

Syntax:

BASIC Syntax ret% = WSSsendResp% (response%)

C Syntax ret = WSSsendResp (response)

Action: Responds to a received Word Serial Protocol query with a response and asserts the WR bit (in addition to
the RR bit) in the local CPU Response register. This function must be called after the processing of a
Word Serial Protocol query (commands are acknowledged with WSSnoResp).

Remarks:
Input parameter:

response integer 16-bit response

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Servant Word Serial functions not supported
-2 = Response still pending (MQE generated)

BASIC Example:
' Respond with &H1234 to a received Word Serial Protocol query.

response% = &H1234
ret% = WSSsendResp% (response%)
IF ret% < 0 THEN

' An error occurred during WSSsendResp.
END IF

C Example:
/* Respond with 0x1234 to a received Word Serial Protocol query. */

int ret;
int response;

response = 0x1234;
ret = WSSsendResp (response);
if (ret < 0)

/* An error occurred during WSSsendResp. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-27 LabWindows VXI Library Reference Manual

WSSwrt

Syntax:

BASIC Syntax ret% = WSSwrt% (buf$, count&, modevalue%)

C Syntax ret = WSSwrt (buf, count, modevalue)

Action: Posts the write operation to transfer the specified number of data bytes from a specified memory buffer to
the Message-Based Commander, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

buf string Write buffer
count long Maximum number of bytes to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 DOR signal mode to Commander (if enabled)
0 = Do not send DOR signal to Commander
1 = Send DOR signal to Commander

1 END bit termination with last byte
0 = Do not send END with the last byte
1 = Send END with the last byte

Output parameters:
none

Return value:
ret integer Return Status

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = Word Serial Servant write operation already

 in progress

BASIC Example:
' Write 6 bytes to the Commander.

buf$ = "1.0422"
count& = 6&
modevalue% = &H0002 ' Send END with the last byte.
ret% = WSSwrt% (buf$, count&, modevalue%)
IF ret% < 0 THEN

' An error occurred during WSSwrt.
END IF

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-28 © National Instruments Corporation

C Example:
/* Write 6 bytes to the Commander. */

int ret;
char *buf;
long count;
int modevalue;

buf = "1.0422";
count = 6L;
modevalue = 0x0002; /* Send END with the last byte. */
ret = WSSwrt (buf, count, modevalue);
if (ret < 0)

/* An error occurred during WSSwrt. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-29 LabWindows VXI Library Reference Manual

WSSwrti

Syntax:

BASIC Syntax ret% = WSSwrti% (buf%(), count&, modevalue%)

C Syntax ret = WSSwrti (buf, count, modevalue)

Action: Posts the write operation to transfer the specified number of integers from a specified memory buffer to
the Message-Based Commander, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

buf integer array Write buffer
count long Maximum number of integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 DOR signal mode to Commander (if enabled)
0 = Do not send DOR signal to Commander
1 = Send DOR signal to Commander

1 END bit termination with last byte
0 = Do not send END with the last byte
1 = Send END with the last byte

Output parameters:
none

Return value:
ret integer Return Status

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = Word Serial Servant write operation already

 in progress

BASIC Example:
' Write 6 integers to the Commander.

DIM buf%(100)
count& = 6&
modevalue% = &H0002 ' Send END with the last byte.
ret% = WSSwrti% (buf%(), count&, modevalue%)
IF ret% < 0 THEN

' An error occurred during WSSwrti.
END IF

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-30 © National Instruments Corporation

C Example:
/* Write 6 integers to the Commander. */

int ret;
int buf[100];
long count;
int modevalue;

count = 6L;
modevalue = 0x0002; /* Send END with the last byte. */
ret = WSSwrti (buf, count, modevalue);
if (ret < 0)

/* An error occurred during WSSwrti. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-31 LabWindows VXI Library Reference Manual

WSSwrtl

Syntax:

BASIC Syntax ret% = WSSwrtl% (buf&(), count&, modevalue%)

C Syntax ret = WSSwrtl (buf, count, modevalue)

Action: Posts the write operation to transfer the specified number of long integers from a specified memory
buffer to the Message-Based Commander, using the VXIbus Byte Transfer Protocol.

Remarks:
Input parameters:

buf long array Write buffer
count long Maximum number of long integers to transfer
modevalue integer Mode of transfer (bit vector)

 Bit Description

0 DOR signal mode to Commander (if enabled)
0 = Do not send DOR signal to Commander
1 = Send DOR signal to Commander

1 END bit termination with last byte
0 = Do not send END with the last byte
1 = Send END with the last byte

Output parameters:
none

Return value:
ret integer Return Status

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = Word Serial Servant write operation already

 in progress

BASIC Example:
' Write 6 long integers to the Commander.

DIM buf&(100)
count& = 6&
modevalue% = &H0002 ' Send END with the last byte.
ret% = WSSwrtl% (buf&(100), count&, modevalue%)
IF ret% < 0 THEN

' An error occurred during WSSwrtl.
END IF

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-32 © National Instruments Corporation

C Example:
/* Write 6 long integers to the Commander. */

int ret;
long buf[100];
long count;
int modevalue;

count = 6L;
modevalue = 0x0002; /* Send END with the last byte. */
ret = WSSwrtl (buf, count, modevalue);
if (ret < 0)

/* An error occurred during WSSwrtl. */;

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-33 LabWindows VXI Library Reference Manual

Default Handlers for the Servant Word Serial Functions
The NI-VXI software provides the following default handlers for the Servant Word Serial functions. These are
sample handlers that InitVXIlibrary installs when it initializes the software at the beginning of the application
program. Default handlers give you the minimal and most common functionality required for a VXI system. They
are given in source code form on your NI-VXI distribution media to be used as examples/prototypes for extending
their functionality to a particular application.

DefaultWSScmdHandler

Syntax:

BASIC Syntax none

C Syntax DefaultWSScmdHandler (cmd)

Action: Handles any Word Serial Protocol command or query received from a VXI Message-Based Commander.
Uses global variables to handle many of the Word Serial commands. Implements all commands required
for Servant operation.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

cmd integer 16-bit Word Serial command received

Output parameters:
none

Return value:
none

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-34 © National Instruments Corporation

DefaultWSSEcmdHandler

Syntax:

BASIC Syntax none

C Syntax DefaultWSSEcmdHandler (cmdExt, cmd)

Action: Handles Extended Longword Serial Protocol commands or queries received from a VXI Message-Based
Commander. Returns an Unsupported Command protocol error for all commands and queries because
the VXI specification does not define any Extended Longword Serial commands.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

cmdExt integer Upper 16 bits of 48-bit Extended Longword Serial
command received

cmd long Lower 32 bits of 48-bit Extended Longword Serial
command received

Output parameters:
none

Return value:
none

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-35 LabWindows VXI Library Reference Manual

DefaultWSSLcmdHandler

Syntax:

BASIC Syntax none

C Syntax DefaultWSSLcmdHandler (cmd)

Action: Handles Longword Serial Protocol commands or queries received from a VXI Message-Based
Commander. Returns an Unsupported Command protocol error for all commands and queries because
the VXI specification does not define any Longword Serial commands.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

cmd long 32-bit Longword Serial command received

Output parameters:
none

Return value:
none

Servant Word Serial Protocol Functions Chapter 4

LabWindows VXI Library Reference Manual 4-36 © National Instruments Corporation

DefaultWSSrdHandler

Syntax:

BASIC Syntax none

C Syntax DefaultWSSrdHandler (status, count)

Action: Handles the termination of a Servant Word Serial read operation started with WSSrd. Sets the
global variable WSSrdDone to 1, the WSSrdDoneStatus variable to status, and the
WSSrdDoneCount to count.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

status integer Status bit vector

The following table gives the meaning of each bit that is set to 1.

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
4 ForcedAbort WSSabort called to force abort

 Successful Transfer (Bit 15 = 0)
2 TC All bytes received
1 END END received with last byte
0 IODONE Transfer successfully completed

count long Actual number of bytes received

Output parameters:
none

Return value:
none

Chapter 4 Servant Word Serial Protocol Functions

© National Instruments Corporation 4-37 LabWindows VXI Library Reference Manual

DefaultWSSwrtHandler

Syntax:

BASIC Syntax none

C Syntax DefaultWSSwrtHandler (status, count)

Action: Handles the termination of a Servant Word Serial write operation started with WSSwrt. Sets the global
variable WSSwrtDone to 1, the WSSwrtDoneStatus variable to status, and the
WSSwrtDoneCount variable to count.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

status integer Status bit vector

The following table gives the meaning of each bit that is set to 1.

 Bit Name Description

 Error Conditions (Bit 15 = 1)
14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
4 ForcedAbort WSSabort called to force abort

 Successful Transfer (Bit 15 = 0)
2 TC All bytes sent
1 END END sent with last byte
0 IODONE Transfer successfully completed

count long Actual number of bytes sent

Output parameters:
none

Return value:
none

© National Instruments Corporation 5-1 LabWindows VXI Library Reference Manual

Chapter 5
Low-Level VXIbus Access Functions

This chapter describes the functions in the LabWindows VXI Low-Level VXIbus Access Library. Low-level and
high-level VXIbus Access functions are used to directly read or write to VXIbus addresses. Direct reads and writes
to the different VXIbus address spaces are required in many situations, including the following:

• Register-Based device/instrument drivers

• Non-VXI/VME device/instrument drivers

• Accessing device-dependent registers on any type of VXI/VME device

• Implementing shared memory protocols

Low-level VXIbus access is the fastest access method for directly reading from or writing to any of the VXIbus
address spaces. The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The
following 16 functions are described in this chapter:

• ClearBusError

• GetByteOrder

• GetContext

• GetPrivilege

• GetVXIbusStatus

• GetVXIbusStatusInd

• GetWindowRange

• MapVXIAddress

• RestoreContext

• SaveContext

• SetByteOrder

• SetContext

• SetPrivilege

• UnMapVXIAddress

• VXIpeek

• VXIpoke

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-2 © National Instruments Corporation

ClearBusError

Syntax:

BASIC Syntax none

C Syntax ret = ClearBusError ()

Action: Clears Bus Errors generated during low-level VXIbus access functions.

Note: For standalone C programs only.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Bus Error cleared successfully
-1 = No hardware support

BASIC Example:
none

C Example:
/* Set the Bus Error handler at the beginning of the program. */

NIVXI_HBUSERROR UserBusErrorHandler;

SetBusErrorHandler (UserBusErrorHandler);

/* The UserBusErrorHandler can be defined as following. */

void NIVXI_HANDLER UserBusErrorHandler (void)
{

ClearBusError ();

/*
User code

*/

}

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-3 LabWindows VXI Library Reference Manual

GetByteOrder

Syntax:

BASIC Syntax ret% = GetByteOrder% (windownum&, ordermode%)

C Syntax ret = GetByteOrder (windownum, ordermode)

Action: Gets the byte/word order of data transferred into or out of the specified window.

Remarks:
Input parameter:

windownum long Window number as returned from MapVXIAddress

Output parameter:
ordermode integer Contains the byte/word ordering

0 = Motorola byte ordering
1 = Intel byte ordering

Return value:
ret integer Return Status

0 = Successful
1 = Byte order returned successfully; same for all

-1 = Invalid windownum

BASIC Example:
' Get the byte order for the specified window.

' Window value is set in MapVXIAddress.

ret% = GetByteOrder% (windownum&, ordermode%)

C Example:
/* Get the byte order for the specified window. */

int ret;
long windownum;
int ordermode;

/* Window value is set in MapVXIAddress. */

ret = GetByteOrder (windownum, &ordermode);

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-4 © National Instruments Corporation

GetContext

Syntax:

BASIC Syntax ret% = GetContext% (windownum&, context&)

C Syntax ret = GetContext (windownum, context)

Action: Gets the current hardware interface settings (context) for the specified window.

Remarks:
Input parameter:

windownum long Window number as returned from MapVXIAddress

Output parameter:
context long Returned VXI hardware access context

Return value:
ret integer Return Status

 0 = Successful
-1 = Invalid windownum

BASIC Example:
' Get or set the context for a window.

' Window ID set in MapVXIAddress call.

ret% = GetContext% (windownum&, context&)

' Change window settings as needed.

ret% = SetContext% (windownum&, context&)

C Example:
/* Get or set the context for a window. */

int ret;
long windownum;
long context;

/* Window ID set in MapVXIAddress call. */

ret = GetContext (windownum, &context);

/* Change window settings as needed. */

ret = SetContext (windownum, context);

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-5 LabWindows VXI Library Reference Manual

GetPrivilege

Syntax:

BASIC Syntax ret% = GetPrivilege% (windownum&, priv%)

C Syntax ret = GetPrivilege (windownum, priv)

Action: Gets the current VXI/VME access privilege for the specified window.

Remarks:
Input parameter:

windownum long Window number as returned from MapVXIAddress

Output parameter:
priv integer Access Privilege

0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

Return value:
ret integer Return Status

0 = Successful
-1 = Invalid windownum

BASIC Example:
' Get the privilege for a window.

' Window value is returned from MapVXIAddress.

ret% = GetPrivilege% (windownum&, priv%)
IF ret% <> 0 THEN

' Error occurred in GetPrivilege.
END IF

C Example:
/* Get the privilege for a window. */

int ret;
long windownum;
int priv;

/* Window value is returned from MapVXIAddress. */

ret = GetPrivilege (windownum, &priv);
if (ret != 0)

/* Error occurred in GetPrivilege. */;

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-6 © National Instruments Corporation

GetVXIbusStatus

Syntax:

BASIC Syntax none

C Syntax ret = GetVXIbusStatus (controller, status)

Action: Gets information about the state of the VXIbus in a specified controller (either an embedded CPU or an
extended controller).

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

controller integer Controller to get status from (-2 = OR of all)

Output parameter:
status Structure containing VXIbus status

Structure is as follows:
struct BusStat {

int BusError; /* 1 = Last access BERRed */
int Sysfail; /* 1 = SYSFAIL* asserted */
int ACfail; /* 1 = ACFAIL* asserted */
int SignalIn; /* Number of signals queued */
int VXIints; /* Bit vector 1 = interrupt asserted */
int ECLtrigs; /* Bit vector 1 = trigger asserted */
int TTLtrigs; /* Bit vector 1 = trigger asserted */
}

A value of -1 returned in any of the fields signifies that there is no hardware
support to retrieve information for that particular VXIbus state.

Return value:
ret integer Return Status

0 = Status information received successfully
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller

BASIC Example:
none

C Example:
/* Get the VXIbus status from local (or first) controller. */

int ret;
int controller;
BusStat status;

controller = -1;
ret = GetVXIbusStatus (controller, &status);
if (ret < 0)

/* Error in GetVXIbusStatus. */;

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-7 LabWindows VXI Library Reference Manual

GetVXIbusStatusInd

Syntax:

BASIC Syntax ret% = GetVXIbusStatusInd% (controller%, field%,
 status%)

C Syntax ret = GetVXIbusStatusInd (controller, field,
 status)

Action: Gets information about the state of the VXIbus for the specified field in a particular controller.

Remarks:
Input parameters:

controller integer Controller to get status from (-2 = OR of all)
field integer Number of field to return information on

1 BusError; /* 1 = Last access BERRed */
2 Sysfail; /* 1 = SYSFAIL* asserted */
3 ACfail; /* 1 = ACFAIL* asserted */
4 SignalIn; /* Number of signals queued */
5 VXIints; /* Bit vector 1 = interrupt asserted */
6 ECLtrigs; /* Bit vector 1 = trigger asserted */
7 TTLtrigs; /* Bit vector 1 = trigger asserted */

Output parameter:
status integer VXIbus Status

A value of -1 in any of the fields means that there is no
hardware support for that particular state.

Return value:
ret integer Return Status

0 = Status information received successfully
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid field

BASIC Example:
' Get the VXIbus status for Sysfail on local (or first) controller.

controller% = -1
field% = 2
ret% = GetVXIbusStatusInd% (controller%, field%, status%)
IF ret% < 0 THEN

' Error in GetVXIbusStatusInd.
END IF

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-8 © National Instruments Corporation

C Example:
/* Get the VXIbus status for Sysfail on local (or first) controller. */

int ret;
int controller;
int field;
int status;

controller = -1;
field = 2;
ret = GetVXIbusStatusInd (controller, field, &status);
if (ret < 0)

/* Error in GetVXIbusStatusInd. */;

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-9 LabWindows VXI Library Reference Manual

GetWindowRange

Syntax:

BASIC Syntax ret% = GetWindowRange% (windownum&, windowbase&,
windowend&)

C Syntax ret = GetWindowRange (windownum, windowbase,
windowend)

Action: Gets the range of addresses that a particular window, allocated with the MapVXIAddress function, can
currently access within a particular VXIbus address space.

Remarks:
Input parameter:

windownum long Window number obtained from MapVXIAddress

Output parameters:
windowbase long Base VXI Address
windowend long End VXI Address

Return value:
ret integer Return Status

0 = Successful
-1 = Invalid windownum

BASIC Example:
' Get the range for the window obtained from MapVXIAddress.

accessparms% = 1
address& = &HC100&
timo& = 0&
addr& = MapVXIAddress& (accessparms%,address&,timo&,windownum&,ret%)
IF ret% < 0 THEN

' Map failed; handle error.
END IF

ret% = GetWindowRange% (windownum&, windowbase&, windowend&)

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-10 © National Instruments Corporation

C Example:
/* Get the range for the window obtained from MapVXIAddress. */

int accessparms;
long address;
long timo;
long windownum;
long windowbase;
long windowend;
int ret;
long addr;

accessparms = 1;
address = 0xc100L;
timo = 0L;
addr = MapVXIAddress (accessparms, address, timo, &windownum, &ret);
if (ret < 0)

/* Map failed; handle error. */;

ret = GetWindowRange (windownum, &windowbase, &windowend);

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-11 LabWindows VXI Library Reference Manual

MapVXIAddress

Syntax:

BASIC Syntax addr& = MapVXIAddress& (accessparms%, address&,
 timo&, windownum&, ret%)

C Syntax addr = MapVXIAddress (accessparms, address, timo,
 windownum, ret)

Action: Sets up a window into one of the VXI address spaces according to the access parameters specified, and
returns a pointer to a local CPU address that accesses the specified VXI address. This function also
returns the window ID associated with the window, which is used with all other low-level VXIbus access
functions.

Remarks:
Input parameters:

accessparms integer (Bits 0-1) VXI Address Space
1 = A16
2 = A24
3 = A32

(Bits 2-4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bit 5)
0

(Bit 6) Access Mode
0 = Access Only
1 = Owner Access

(Bit 7) Byte Order
0 = Motorola
1 = Intel

(Bits 8-15)
0

address long Address within A16, A24, or A32
timo long Timeout (in milliseconds)

Output parameters:
windownum long Window number for use with other functions
ret integer Return Status

0 = Map successful
-2 = Invalid/unsupported accessparms
-3 = Invalid address
-5 = Byte order not supported
-6 = Offset not accessible with this hardware
-7 = Privilege not supported
-8 = Timeout (window still in use; must use

 UnMapVXIAddress)

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-12 © National Instruments Corporation

Return value:
addr long Pointer to local address for specified VXI address;

0 if unable to get pointer.

Note: To maintain compatibility and portability, the pointer obtained by calling this function should be used
only with the functions VXIpeek and VXIpoke.

BASIC Example:
' Get the local address pointer for address &HC100& in the A16 space
' (base of Logical Address 4's VXI registers) with nonprivileged data and
' Motorola byte order. Wait up to 5 seconds to get "Access Only" access
' to the window.

accessparms% = 1 ' A16, Motorola, nonprivileged data
address& = &HC100&' Address = &HC000 + &H40 * Logical Address
timo& = 5000& ' 5 seconds (5000 milliseconds)
addr& = MapVXIAddress& (accessparms%, address&, timo&, windownum&, ret%)
IF ret% < 0 THEN

' Unable to get the pointer.
END IF

C Example:
/* Get the local address pointer for address 0xc100 in the A16 space (base

of Logical address 4's VXI registers) with nonprivileged data and
Motorola byte order. Wait up to 5 seconds to get "Access Only" access
to the window. */

int accessparms;
long address;
long timo;
long windownum;
int ret;
long addr;

accessparms = 1; /* A16, Motorola, nonprivileged data */
address = 0xc100L;/* Address = 0xc000 + 0x40 * Logical Address */
timo = 5000L; /* 5 seconds (5000 milliseconds) */
addr = MapVXIAddress (accessparms, address, timo, &windownum, &ret);
if (ret < 0)

/* Unable to get the pointer. */;

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-13 LabWindows VXI Library Reference Manual

RestoreContext

Syntax:

BASIC Syntax none

C Syntax ret = RestoreContext (contextlist)

Action: Restores hardware context for all of the VXI windows. The contextlist parameter should contain
values set within the function SaveContext.

Note: For standalone C programs only.

Remarks:
Input parameters:

none

Output parameter:
contextlist ContextStruct Pointer to structure created by SaveContext

Return value:
ret integer Return Status

0 = Successful
-2 = NULL contextlist pointer

BASIC Example:
none

C Example:
/* Restore the context for all the windows. */

int ret;
ContextStruct contextlist;

ret = SaveContext (&contextlist);

/*
Interrupt service routine code.

*/

ret = RestoreContext (&contextlist);

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-14 © National Instruments Corporation

SaveContext

Syntax:

BASIC Syntax none

C Syntax ret = SaveContext (contextlist)

Action: Saves the hardware context for all of the VXI windows. The contextlist parameter is filled with a
list of the contexts for all of the VXI windows. This function is recommended for use only within
interrupt service routines to guarantee access to a particular VXI window.

Note: For standalone C programs only.

Remarks:
Input parameters:

none

Output parameter:
contextlist ContextStruct Pointer to allocated structure to hold all contexts

Return value:
ret integer Return Status

0 = Successful
-2 = NULL contextlist pointer

BASIC Example:
none

C Example:
/* Save the context for all the windows. */

int ret;
ContextStruct contextlist;

ret = SaveContext (&contextlist);

/*
Interrupt service routine code.

*/

ret = RestoreContext (&contextlist);

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-15 LabWindows VXI Library Reference Manual

SetByteOrder

Syntax:

BASIC Syntax ret% = SetByteOrder% (windownum&, ordermode%)

C Syntax ret = SetByteOrder (windownum, ordermode)

Action: Sets the byte/word order of data transferred into or out of the specified window.

Remarks:
Input parameters:

windownum long Window number as returned from MapVXIAddress
ordermode integer Specifies the byte/word ordering

0 = Motorola byte ordering
1 = Intel byte ordering

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful; byte order set for specific window only
1 = Successful; byte order set for all windows

-1 = Invalid windownum
-2 = Invalid ordermode
-5 = ordermode not supported
-9 = No Owner Access for windownum

BASIC Example:
' Set the byte order to Motorola for a window.

' Window set in call to MapVXIAddress().
ordermode% = 0
ret% = SetByteOrder% (windownum&, ordermode%)
IF ret% < 0 THEN

' Capability not present.
END IF

C Example:
/* Set the byte order to Motorola for a window. */

int ret;
long windownum;
int ordermode;

/* Window set in call to MapVXIAddress(). */
ordermode = 0;
ret = SetByteOrder (windownum, ordermode);
if (ret == -1)

/* Capability not present. */;

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-16 © National Instruments Corporation

SetContext

Syntax:

BASIC Syntax ret% = SetContext% (windownum&, context&)

C Syntax ret = SetContext (windownum, context)

Action: Sets the current hardware interface settings (context) for the specified window. The value for context
should have been set previously by the function GetContext.

Remarks:
Input parameters:

windownum long Window number as returned from MapVXIAddress
context long VXI hardware context to install (context returned from

GetContext)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Invalid windownum
-2 = Invalid/unsupported context
-9 = No Owner Access for windownum

BASIC Example:
' Get or set the context for a window.

' Window ID set in MapVXIAddress call.
ret% = GetContext% (windownum&, context&)

' Change window settings as needed.

ret% = SetContext% (windownum&, context&)

C Example:
/* Get or set the context for a window. */

int ret;
long windownum;
long context;

/* Window ID set in MapVXIAddress call. */
ret = GetContext (windownum, &context);

/* Change window settings as needed. */

ret = SetContext (windownum, context);

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-17 LabWindows VXI Library Reference Manual

SetPrivilege

Syntax:

BASIC Syntax ret% = SetPrivilege% (windownum&, priv%)

C Syntax ret = SetPrivilege (windownum, priv)

Action: Sets the VXI/VME access privilege for the specified window to the specified privilege state.

Remarks:
Input parameters:

windownum long Window number as returned from MapVXIAddress
priv integer Access Privilege

0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Invalid windownum
-2 = Invalid priv
-7 = priv not supported
-9 = No Owner Access for windownum

BASIC Example:
' Set nonprivileged data access for a window.

' Window ID set in MapVXIAddress call.
priv% = 0
ret% = SetPrivilege% (windownum&, priv%)
IF ret% < 0 THEN

' Error occurred in SetPrivilege.
END IF

C Example:
/* Set nonprivileged data access for a window. */

int ret;
long windownum;
int priv;

/* Window ID set in MapVXIAddress call. */
priv = 0;
ret = SetPrivilege (windownum, priv);
if (ret != 0)

/* Error occurred in SetPrivilege. */;

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-18 © National Instruments Corporation

UnMapVXIAddress

Syntax:

BASIC Syntax ret% = UnMapVXIAddress% (windownum&)

C Syntax ret = UnMapVXIAddress (windownum)

Action: Deallocates a window that was allocated using the MapVXIAddress function.

Remarks:
Input parameter:

windownum long Window number obtained from MapVXIAddress

Output parameters:
none

Return value:
ret integer Return Status

1 = Access Only released (accessors remain)
0 = Window successfully unmapped

-1 = Invalid windownum

BASIC Example:
' Unmap the window obtained from MapVXIAddress.

accessparms% = 1
address& = &HC100&
timo& = 0&
addr& = MapVXIAddress& (accessparms%, address&, timo&, windownum&, ret%)
IF addr& <> 0& THEN

' Use the pointer here.
ret% = UnMapVXIAddress% (windownum&)
IF ret% < 0 THEN

' Unmap successful.
END IF

END IF

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-19 LabWindows VXI Library Reference Manual

C Example:
/* Unmap the window obtained from MapVXIAddress. */

int accessparms;
long address;
long timo;
long windownum;
int ret;
void *addr;

accessparms = 1;
address = 0xc100L;
timo = 0L;
addr = MapVXIAddress (accessparms, address, timo, &windownum, &ret);
if (addr != NULL)
{

/*
Use the pointer here.

*/
ret = UnMapVXIAddress (windownum);
if (ret >= 0)

/* Unmap successful. */
}

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-20 © National Instruments Corporation

VXIpeek

Syntax:

BASIC Syntax CALL VXIpeek (addressptr&, accwidth%, value)

C Syntax VXIpeek (addressptr, accwidth, value)

Action: Reads a single byte, word, or longword from a specified VXI address by de-referencing a pointer
obtained from MapVXIAddress.

Remarks:
Input parameters:

addressptr long Address pointer obtained from MapVXIAddress
accwidth integer Byte, word or longword

1 = Byte
2 = Word
4 = Longword

Output parameter:
value any Data value read (string, integer, or long)

Return value:
none

BASIC Example:
' Read the value from the VXI Status register of the device at Logical
' Address 4 into value, an integer variable.

accessparms% = 1 ' A16, Motorola, nonprivileged data.
addressptr& = MapVXIAddress (accessparms%, &HC106&, &H7FFFFFFF&,

windownum&, ret%)
IF ret% >= 0 THEN ' If a valid pointer was returned.

CALL VXIpeek (addressptr&, 2, value%)
END IF

C Example:
/* Read the value from the VXI Status register of the device at Logical

Address 4. */

int accessparms;
long windownum;
int ret;
long addressptr;
int value;

accessparms = 1; /* A16, Motorola, nonprivileged data. */
addressptr = MapVXIAddress (accessparms, (long)0xc106,

(long)0x7fffffff, &windownum, &ret);
if (ret >= 0) /* If a valid pointer was returned. */
{

VXIpeek (addressptr, 2, &value);
}

Chapter 5 Low-Level VXIbus Access Functions

© National Instruments Corporation 5-21 LabWindows VXI Library Reference Manual

VXIpoke

Syntax:

BASIC Syntax CALL VXIpoke (addressptr&, accwidth%, value&)

C Syntax VXIpoke (addressptr, accwidth, value)

Action: Writes a single byte, word, or longword to a specified VXI address by de-referencing a pointer obtained
from MapVXIAddress.

Remarks:
Input parameters:

addressptr long Address pointer obtained from MapVXIAddress
accwidth integer Byte, word or longword

1 = Byte
2 = Word
4 = Longword

value long Data value to write

Output parameters:
none

Return value:
none

BASIC Example:
' Write the value &HFD04& (REQT event) to the Signal register of the
' device at Logical Address 0.

accessparms% = 1 ' A16, Motorola, nonprivileged data.
addressptr& = MapVXIAddress (accessparms%, &HC008&, &H7FFFFFFF&,

windownum&, ret%)
IF ret% >= 0& THEN ' If a valid pointer was returned.

value& = &HFD04&
CALL VXIpoke (addressptr&, 2, value&)

END IF

Low-Level VXIbus Access Functions Chapter 5

LabWindows VXI Library Reference Manual 5-22 © National Instruments Corporation

C Example:
/* Write the value 0xfd04 (REQT event) to the Signal register of the

device at Logical Address 0. */

int accessparms;
long windownum;
int ret;
long addressptr;
long value;

accessparms = 1; /* A16, Motorola, nonprivileged data. */
addressptr = MapVXIAddress (accessparms, (long)0xc008, (long)0x7fffffff,

&windownum, &ret);
if (ret >= 0) /* If a valid pointer was returned. */
{

value = 0xfd04L;
VXIpoke (addressptr, 2, value);

}

© National Instruments Corporation 6-1 LabWindows VXI Library Reference Manual

Chapter 6
High-Level VXIbus Access Functions

This chapter describes the functions in the LabWindows VXI High-Level VXIbus Access Library. Low-level and
high-level VXIbus Access functions are used to directly read or write to VXIbus addresses. Direct reads and writes
to the different VXIbus address spaces are required in many situations, including the following:

• Register-Based device/instrument drivers

• Non-VXI/VME device/instrument drivers

• Accessing device-dependent registers on any type of VXI/VME device

• Implementing shared memory protocols

With high-level access functions, you have direct access to the VXIbus address spaces. You can use these functions
to read, write, and move blocks of data between any of the VXIbus address spaces. When execution speed is not a
critical issue, these functions provide an easy-to-use interface.

The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The following five
functions are described in this chapter:

• VXIin

• VXIinReg

• VXImove

• VXIout

• VXIoutReg

High-Level VXIbus Access Functions Chapter 6

LabWindows VXI Library Reference Manual 6-2 © National Instruments Corporation

VXIin

Syntax:

BASIC Syntax ret% = VXIin% (accessparms%, address&, accwidth%,
 value)

C Syntax ret = VXIin (accessparms, address, accwidth,
 value)

Action: Reads a single byte, word, or longword from a specified VXI address with the specified byte order and
privilege state.

Remarks:
Input parameters:

accessparms integer (Bits 0, 1) VXI Address Space
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)
(Bit 7) Byte Order

0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)
address long VXI address within specified space
accwidth integer Read Width

1 = Byte
2 = Word
4 = Longword

Output parameter:
value void Value read (byte, integer, or long).

Return value:
ret integer Return Status

0 = Read completed successfully
-1 = Bus error occurred during transfer
-2 = Invalid parms
-3 = Invalid address
-4 = Invalid accwidth
-5 = Byte order not supported
-6 = address not accessible with this hardware
-7 = Privilege not supported
-9 = accwidth not supported

Chapter 6 High-Level VXIbus Access Functions

© National Instruments Corporation 6-3 LabWindows VXI Library Reference Manual

BASIC Example:
' Read Protocol register of the device at Logical Address 4.

accessparms% = 1
address& = &HC108& ' &HC000 + LA * &H40 + Protocol register offset 8.
accwidth% = 2
ret% = VXIin% (accessparms%, address&, accwidth%, value%)
IF ret% < 0 THEN

' Error occurred during read.
END IF

C Example:
/* Read Protocol register of the device at Logical Address 4. */

int ret;
int accessparms;
long address;
int accwidth;
int value;

accessparms = 1;
address = 0xc108L; /* 0xc000 + LA * 0x40 + Protocol register offset 8. */
accwidth = 2;
ret = VXIin (accessparms, address, accwidth, &value);
if (ret != 0)

/* Error occurred during read. */;

High-Level VXIbus Access Functions Chapter 6

LabWindows VXI Library Reference Manual 6-4 © National Instruments Corporation

VXIinReg

Syntax:

BASIC Syntax ret% = VXIinReg% (la%, reg%, value%)

C Syntax ret = VXIinReg (la, reg, value)

Action: Reads a single word from a specified VXI register offset on the specified VXI device. The register is
read in Motorola byte order and as nonprivileged data.

Remarks:
Input parameters:

la integer Logical address of the device to read from
reg integer Offset within VXI logical address registers

Output parameter:
value integer Value read from the device VXI register

Return value:
ret integer Return Status

0 = Read completed successfully
-1 = Bus error occurred during transfer
-3 = Invalid reg specified

BASIC Example:
' Read Protocol register of the device at Logical Address 4.

la% = 4
reg% = 8 ' Protocol register offset.
ret% = VXIinReg% (la%, reg%, value%)
IF ret% < 0 THEN

' Error occurred during read.
END IF

C Example:
/* Read Protocol register of the device at Logical Address 4. */

int ret;
int la;
int reg;
int value;

la = 4;
reg = 8; /* Protocol register offset. */
ret = VXIinReg (la, reg, &value);
if (ret != 0)

/* Error occurred during read. */;

Chapter 6 High-Level VXIbus Access Functions

© National Instruments Corporation 6-5 LabWindows VXI Library Reference Manual

VXImove

Syntax:

BASIC Syntax ret% = VXImove% (srcparms%, srcaddr, destparms%,
 destaddr, length%, accwidth%)

C Syntax ret = VXImove (srcparms, srcaddr, destparms,
 destaddr, length, accwidth)

Action: Copies a block of memory from a specified source location in any address space (local, A16, A24, A32)
to a specified destination in any address space.

Remarks:
Input parameters:

srcparms integer (Bits 0, 1) Source Address Space
0 = Local (bits 2, 3, 4, and 7 should be 0)
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)
(Bit 7) Byte Order

0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)
srcaddr any Address within source address space. This address

is a long integer value if it represents a VXI space (1, 2,
3)

or an array address for a local address space (0).
destparms integer (Bits 0, 1) Destination Address Space

0 = Local (bits 2, 3, 4, and 7 should be 0)
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)
(Bit 7) Byte Order

0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)
destaddr any Address within destination address space. This address

is a long integer value if it represents a VXI space (1, 2,
3)

or an array address for a local address space (0).

High-Level VXIbus Access Functions Chapter 6

LabWindows VXI Library Reference Manual 6-6 © National Instruments Corporation

length long Number of elements to transfer
accwidth integer Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

Output parameters:
none

Return value:
ret integer Return Status

0 = Transfer completed successfully
-1 = Bus error occurred
-2 = Invalid srcparms or destparms
-3 = Invalid srcaddr or destaddr
-4 = Invalid accwidth
-5 = Byte order not supported
-6 = Address not accessible with this hardware
-7 = Privilege not supported
-8 = Timeout, DMA aborted (if applicable)
-9 = accwidth not supported

BASIC Example:
' Move 1 kilobyte from A24 space at &H200000& to a local buffer.

DIM destaddr AS STRING * 1024
srcparms% = 2 ' A24, nonprivileged data, Motorola
srcaddr& = &H200000&
destparms% = 0 ' Local space.
length& = &H400& ' 1 kilobyte.
accwidth% = 2 ' Transfer as words.
ret% = VXImove% (srcparms%, srcaddr&, destparms%, destaddr$, length%,

accwidth%)
IF ret% < 0 THEN

' Error occurred during VXImove.
END IF

C Example:
/* Move 1 kilobyte from A24 space at 0x200000 to a local buffer. */

int ret;
int srcparms;
long srcaddr;
int destparms;
char destaddr[1024];
long length;
int accwidth;

srcparms = 2; /* A24, nonprivileged data, Motorola */
srcaddr = 0x200000L;
destparms = 0; /* Local space. */
length = 0x400L; /* 1 kilobyte. */
accwidth = 2; /* Transfer as words. */
ret = VXImove (srcparms, srcaddr, destparms, destaddr, length, accwidth);
if (ret < 0)

/* Error occurred during VXImove. */;

Chapter 6 High-Level VXIbus Access Functions

© National Instruments Corporation 6-7 LabWindows VXI Library Reference Manual

VXIout

Syntax:

BASIC Syntax ret% = VXIout% (accessparms%, address&,
 accwidth%, value&)

C Syntax ret = VXIout (accessparms, address, accwidth,
 value)

Action: Writes a single byte, word, or longword to a specified VXI address with the specified byte order and
privilege state.

Remarks:
Input parameters:

accessparms integer (Bits 0, 1) VXI Address Space
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)
(Bit 7) Byte Order

0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)
address long VXI address within specified address space
accwidth integer Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

value long Data value to write

Output parameters:
none

Return value:
ret integer Return Status

0 = Write completed successfully
-1 = Bus error occurred during transfer
-2 = Invalid accessparms
-3 = Invalid address
-4 = Invalid accwidth
-5 = Byte order not supported
-6 = Address not accessible with this hardware
-7 = Privilege not supported
-9 = accwidth not supported

High-Level VXIbus Access Functions Chapter 6

LabWindows VXI Library Reference Manual 6-8 © National Instruments Corporation

BASIC Example:
' Write the value &HFD04 (the REQT event for Logical Address 4) to the
' Signal register of the device at Logical device at Address 0.

accessparms% = 1
address& = &HC008& ' address = &HC000 + LA * &H40 + register offset 8
accwidth% = 2
value& = &HFD04& ' REQT
ret% = VXIout% (accessparms%, address&, accwidth%, value&)
IF ret% < 0 THEN

' Error occurred during write.
END IF

C Example:
/* Write the value 0xfd04 (the REQT event for Logical Address 4) to the

Signal register of the device at Logical Address 0. */

int ret;
int accessparms;
long address;
int accwidth;
long value;

accessparms = 1;
address = 0xc008L; /* address = 0xc000 + LA * 0x40 + register offset 8 */
accwidth = 2;
value = 0xfd04L; /* REQT */
ret = VXIout (accessparms, address, accwidth, value);
if (ret < 0)

/* Error occurred during write. */;

Chapter 6 High-Level VXIbus Access Functions

© National Instruments Corporation 6-9 LabWindows VXI Library Reference Manual

VXIoutReg

Syntax:

BASIC Syntax ret% = VXIoutReg% (la%, reg%, value%)

C Syntax ret = VXIoutReg (la, reg, value)

Action: Writes a single word to a specified VXI register offset on the specified VXI device. The register is
written in Motorola byte ordering and as nonprivileged data.

Remarks:
Input parameters:

la integer Logical address of the device to write to
reg integer Offset within VXI logical address registers
value integer Value written to the device VXI register

Output parameters:
none

Return value:
ret integer Return Status

0 = Write completed successfully
-1 = Bus error occurred during transfer
-3 = Invalid reg specified

BASIC Example:
' Write Signal register of the device at Logical Address 0 with the
' value &HFD0A (REQT for Logical Address 10).

la% = 0
reg% = 8 ' Signal register offset
value% = &HFD0A ' REQT for Logical Address 10
ret% = VXIoutReg% (la%, reg%, value%)
IF ret% < 0 THEN

' Error occurred during write.
END IF

C Example:
/* Write Signal register of the device at Logical Address 0 with the value

0xfd0a (REQT for Logical Address 10). */

int ret;
int la;
int reg;
int value;

la = 0;
reg = 8; /* Signal register offset */
value = 0xfd0a;/* REQT for Logical Address 10 */
ret = VXIoutReg (la, reg, value);
if (ret != 0)

/* Error occurred during write. */;

© National Instruments Corporation 7-1 LabWindows VXI Library Reference Manual

Chapter 7
Local Resource Access Functions

This chapter describes the functions in the LabWindows VXI Local Resource Access Library. Local resources are
hardware and/or software capabilities that are reserved for the local CPU (the CPU on which the NI-VXI interface
resides). With these functions, you have access to miscellaneous local resources such as the local CPU VXI register
set, Slot 0 MODID operations, and the local CPU VXI Shared RAM. These functions are useful for shared memory
type communication, non-Resource Manager operation, and debugging purposes.

Access to the local CPU logical address is required for sending correct VXI signal values to other devices. Reading
local VXI registers is required for retrieving configuration information. Writing to the A24 and A32 pointer
registers is required for use under the Shared Memory Protocol of the VXIbus specification, Revision 1.2.
Exercising the local CPU MODID capabilities (if the local CPU is a VXI Slot 0 device) can be helpful for
debugging a prototype VXI device's slot association (MODID) capability.

The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The following eight
functions are described in this chapter:

• GetMyLA

• ReadMODID

• SetMODID

• VXIinLR

• VXImemAlloc

• VXImemCopy

• VXImemFree

• VXIoutLR

Local Resource Access Functions Chapter 7

LabWindows VXI Library Reference Manual 7-2 © National Instruments Corporation

GetMyLA

Syntax:

BASIC Syntax la% = GetMyLA% ()

C Syntax la = GetMyLA ()

Action: Gets the logical address of the local VXI device (the VXI device on which this copy of the NI-VXI
software is running).

Remarks:
Parameters:

none

Return value:
la integer Logical address of the local device

BASIC Example:
' Get my logical address.

la% = GetMyLA% ()

C Example:
/* Get my logical address. */

int la;

la = GetMyLA();

Chapter 7 Local Resource Access Functions

© National Instruments Corporation 7-3 LabWindows VXI Library Reference Manual

ReadMODID

Syntax:

BASIC Syntax ret% = ReadMODID% (modid%)

C Syntax ret = ReadMODID (modid)

Action: Senses the MODID lines of the VXIbus backplane. This function applies only to the local device, which
must be a Slot 0 device.

Remarks:
Input parameters:

none

Output parameter:
modid integer Bit vector as follows:

 Bits Description

12-0 MODID lines 12 to 0, respectively
 13 MODID enable bit

Return value:
ret integer Return Status

0 = Successfully read MODID lines
-1 = Not a Slot 0 device

BASIC Example:
' Read all the MODID lines 0 to 12.

ret% = ReadMODID% (modid%)
IF ret% <> 0 THEN

' Error occurred in ReadMODID.
END IF

C Example:
/* Read all the MODID lines 0 to 12. */

int ret;
int modid;

ret = ReadMODID (&modid);
if (ret != 0)

/* Error occurred in ReadMODID. */;

Local Resource Access Functions Chapter 7

LabWindows VXI Library Reference Manual 7-4 © National Instruments Corporation

SetMODID

Syntax:

BASIC Syntax ret% = SetMODID% (enable%, modid%)

C Syntax ret = SetMODID (enable, modid)

Action: Controls the assertion of the MODID lines of the VXIbus backplane. This function applies only to the
local device, which must be a Slot 0 device.

Remarks:
Input parameters:

enable integer 1 = Set MODID enable bit
0 = Clear MODID enable bit

modid integer Bit vector for Bits 0 to 12, corresponding to Slots 0 to 12

Output parameters:
none

Return value:
ret integer Return Status

0 = Successfully set MODID lines
-1 = Not a Slot 0 device

BASIC Example:
' Set all the MODID lines 0 to 12.

enable% = 1
modid% = &H1FFF ' Bit vector (Bits 0 to 12).

ret% = SetMODID% (enable%, modid%)
IF ret% <> 0 THEN

' Error occurred in SetMODID.
END IF

C Example:
/* Set all the MODID lines 0 to 12. */

int ret;
int enable;
int modid;

enable = 1;
modid = 0x1fff;/* Bit vector (Bits 0 to 12). */

ret = SetMODID (enable, modid);
if (ret != 0)

/* Error occurred in SetMODID. */;

Chapter 7 Local Resource Access Functions

© National Instruments Corporation 7-5 LabWindows VXI Library Reference Manual

VXIinLR

Syntax:

BASIC Syntax ret% = VXIinLR% (reg%, accwidth%, value)

C Syntax ret = VXIinLR (reg, accwidth, value)

Action: Reads a single byte, word, or longword from a particular VXI register on the local VXI device. The
register is read in Motorola byte order and as nonprivileged data.

Remarks:
Input parameters:

reg integer Offset within VXI logical address registers
accwidth integer Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

Output parameter:
value any Data value read (byte, integer, or long)

Return value:
ret integer Return Status

0 = Successful
-1 = Bus error
-3 = Invalid reg
-4 = Invalid accwidth
-9 = accwidth not supported

BASIC Example:
' Read the value of the local VXI Status register.

reg% = 4 ' VXI Status register offset within registers.
accwidth% = 2 ' Read word register.
ret% = VXIinLR% (reg%, accwidth%, value%)
IF ret% <> 0 THEN

' Error in VXIinLR.
END IF

C Example:
/* Read the value of the local VXI Status register. */

intret;
intreg;
intaccwidth;
intvalue;

reg = 4; /* VXI Status register offset within registers. */
accwidth = 2; /* Read word register. */
ret = VXIinLR (reg, accwidth, &value);
if (ret != 0)

/* Error in VXIinLR. */;

Local Resource Access Functions Chapter 7

LabWindows VXI Library Reference Manual 7-6 © National Instruments Corporation

VXImemAlloc

Syntax:

BASIC Syntax ret% = VXImemAlloc% (size&, useraddr$, vxiaddr&)

C Syntax ret = VXImemAlloc (size, useraddr, vxiaddr)

Action: Allocates dynamic system RAM from the VXI Shared RAM area of the local CPU and returns both the
local and remote VXI addresses. The VXI address space is the same as the space for which the local
device is dual-porting memory. This function can be used for setting up shared memory transfers.

Remarks:
Input parameter:

size long Number of bytes to allocate

Output parameters:
useraddr string Returned application memory buffer address (in

standalone C, this parameter is type void*)
vxiaddr long Returned remote VXI memory buffer address

Return value:
ret integer Return Status

0 = Successful; memory can be accessed directly
1 = Successful; memory must be accessed using

 VXImemCopy
-1 = Memory allocation failed
-2 = Local CPU is A16 only

BASIC Example:
' Allocate, use, and free 32 kilobytes of VXI Shared system RAM.

size& = &H8000& ' 32 kilobytes
ret% = VXImemAlloc% (size&, useraddr$, vxiaddr&)
IF ret% < 0 THEN

' Error in VXImemAlloc.
END IF

' Use buffer.

ret% = VXImemFree% (useraddr$)
IF ret% <> 0 THEN

' Error in VXImemFree.
END IF

Chapter 7 Local Resource Access Functions

© National Instruments Corporation 7-7 LabWindows VXI Library Reference Manual

C Example:
/* Allocate, use, and free 32 kilobytes of VXI Shared system RAM. */

long size;
char* useraddr;
long vxiaddr;
int ret;

size= 0x8000; /* 32 kilobytes */
ret = VXImemAlloc (size, &useraddr, &vxiaddr);
if (ret != 0)

/* Error in VXImemAlloc. */;

/*
Use buffer.

*/

ret = VXImemFree (useraddr);
if (ret != 0)

/* Error in VXImemFree. */;

Local Resource Access Functions Chapter 7

LabWindows VXI Library Reference Manual 7-8 © National Instruments Corporation

VXImemCopy

Syntax:

BASIC Syntax ret% = VXImemCopy% (useraddr$, bufaddr&,
size&, dir&)

C Syntax ret = VXImemCopy (useraddr, bufaddr, size,
 dir)

Action: Copies an application buffer to or from the local shared memory. On some systems, local shared
memory cannot be accessed directly by an application. VXImemCopy provides a fast access method to
local shared memory.

Remarks:
Input parameter:

useraddr string User address returned by VXImemAlloc (in standalone
C, this parameter is type void*)

bufaddr long User's local buffer address
size long Size of buffer to be copied
dir integer Direction of transfer

1 = Copy from bufaddr to useraddr
0 = Copy from useraddr to bufaddr

Output parameters:
none

Return value:
ret integer Return Status

0 = Buffer copied successfully
-1 = Copy failed
-5 = Invalid dir

BASIC Example:
' Allocate, copy, use, and free 32 kilobytes of VXI Shared system RAM.

DIM bufaddr% (16384)
size& = &H8000& ' 32 kilobytes
ret% = VXImemAlloc% (size&, useraddr$, vxiaddr&)
IF ret% < 0 THEN

' Error in VXImemAlloc.
END IF

' Remote Bus Master access.

IF ret% = 1 THEN
ret% = VXImemCopy% (useraddr$, bufaddr&, size&, 0)

END IF
' Use the buffer.
ret% = VXImemFree% (useraddr$)

Chapter 7 Local Resource Access Functions

© National Instruments Corporation 7-9 LabWindows VXI Library Reference Manual

C Example:
/* Allocate, copy, use, and free 32 kilobytes of VXI Shared

system RAM. */

long size;
char* useraddr;
long vxiaddr;
int ret;
int bufaddr[0x4000];

size= 0x8000; /* 32 kilobytes. */
ret = VXImemAlloc (size, &useraddr, &vxiaddr);
if (ret < 0)

/* Error in VXImemAlloc. */

/*
Tell remote bus master to copy 32 kilobytes to local
shared memory by writing to VXI address "vxiaddr."
*/

/* Copy to application. */
VXImemCopy (useraddr, bufaddr, size, 0);

/*
Use buffer.

*/

ret = VXImemFree (useraddr);
if (ret != 0)

/* Error in VXImemFree. */;

Local Resource Access Functions Chapter 7

LabWindows VXI Library Reference Manual 7-10 © National Instruments Corporation

VXImemFree

Syntax:

BASIC Syntax ret% = VXImemFree% (useraddr$)

C Syntax ret = VXImemFree (useraddr)

Action: Deallocates dynamic system RAM from the VXI Shared RAM area of the local CPU that was allocated
using the VXImemAlloc function.

Remarks:
Input parameter:

useraddr string User address (returned by VXImemAlloc) to be freed (in
standalone C, this parameter is type void*)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Memory deallocation failed

BASIC Example:
' Allocate, use, and free 32 kilobytes of VXI Shared system RAM.

size& = &H8000&
ret% = VXImemAlloc% (size&, useraddr$, vxiaddr&)
IF ret% <> 0 THEN

' Error in VXImemAlloc.
END IF

' Use buffer.

ret% = VXImemFree% (useraddr$)
IF ret% <> 0 THEN

' Error in VXImemFree.
END IF

Chapter 7 Local Resource Access Functions

© National Instruments Corporation 7-11 LabWindows VXI Library Reference Manual

C Example:
/* Allocate, use, and free 32 kilobytes of VXI Shared system RAM. */

long size;
char* useraddr;
long vxiaddr;
int ret;

accwidth = 0x8000; /* 32 kilobytes. */
ret = VXImemAlloc (size, &useraddr, &vxiaddr);
if (ret < 0)

/* Error in VXImemAlloc. */;

/*
Use buffer.

*/

ret = VXImemFree (useraddr);
if (ret != 0)

/* Error in VXImemFree. */;

Local Resource Access Functions Chapter 7

LabWindows VXI Library Reference Manual 7-12 © National Instruments Corporation

VXIoutLR

Syntax:

BASIC Syntax ret% = VXIoutLR% (reg%, accwidth%, value&)

C Syntax ret = VXIoutLR (reg, accwidth, value)

Action: Writes a single byte, word, or longword to a particular VXI register on the local VXI device. The
register is written in Motorola byte order and as nonprivileged data.

Remarks:
Input parameters:

reg integer Offset within VXI logical address registers
accwidth integer Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

value long Data value to write

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Bus error
-3 = Invalid reg
-4 = Invalid accwidth
-9 = accwidth not supported

BASIC Example:
' Write the value of &HFD00 (REQT) to the local Signal register.

reg% = 8 ' Register offset for Signal register.
accwidth% = 2 ' Word register.
value& = &HFD00 ' REQT.
ret% = VXIoutLR% (reg%, accwidth%, value&)
IF ret% <> 0 THEN

' Error in VXIoutLR.
END IF

Chapter 7 Local Resource Access Functions

© National Instruments Corporation 7-13 LabWindows VXI Library Reference Manual

C Example:
/* Write the value of 0xfd00 (REQT) to the local Signal register. */

intret;
intreg;
intaccwidth;
long value;

reg = 8; /* Register offset for Signal register. */
accwidth = 2; /* Word register. */
value = 0xfd00L; /* REQT. */
ret = VXIoutLR (reg, accwidth, value);
if (ret != 0)

/* Error in VXIoutLR. */;

© National Instruments Corporation 8-1 LabWindows VXI Library Reference Manual

Chapter 8
VXI Signal Functions

This chapter describes the functions in the LabWindows VXI Signal Library. With these functions, VXI bus master
devices can interrupt another device. VXI signal functions can specify the signal routing, manipulate the global
signal queue, and wait for a particular signal value (or set of values) to be received.

VXI signals are a basic form of asynchronous communication used by VXI bus master devices. A VXI signal is a
16-bit value written to the Signal register of a VXI Message-Based device. Normally, the write to the Signal register
generates a local CPU interrupt, and the local CPU then acquires the signal value in some device-specific manner.
All National Instruments hardware platforms have a hardware FIFO to accumulate signal values while waiting for
the local CPU to retrieve them. The format of the 16-bit signal value is defined by the VXIbus specification and is
the same as the format used for the VXI interrupt status/ID word that is returned during a VXI interrupt
acknowledge cycle. All VXI signals and status/ID values contain the VXI logical address of the sending device in
the lower 8 bits of the VXI signal or status/ID value. The upper 8 bits of the 16-bit value depends on the VXI device
type.

The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The following nine
functions are described in this chapter:

• DisableSignalInt

• EnableSignalInt

• GetSignalHandler

• RouteSignal

• SetSignalHandler

• SignalDeq

• SignalEnq

• SignalJam

• WaitForSignal

VXI Signal Functions Chapter 8

LabWindows VXI Library Reference Manual 8-2 © National Instruments Corporation

DisableSignalInt

Syntax:

BASIC Syntax ret% = DisableSignalInt% ()

C Syntax ret = DisableSignalInt ()

Action: Desensitizes the local CPU to interrupts generated by writes to the local VXI Signal register. While
disabled, no VXI signals are processed. If the local VXI hardware Signal register is implemented as a
FIFO, signals are held in the FIFO until the signal interrupt is enabled via the EnableSignalInt
function. When the FIFO is full, the remote VXI device will get a Bus Error in response to a write to the
Signal register.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Signal interrupts successfully disabled

BASIC Example:
' Disable the signal interrupt.

ret% = DisableSignalInt% ()

C Example:
/* Disable the signal interrupt. */

int ret;

ret = DisableSignalInt ();

Chapter 8 VXI Signal Functions

© National Instruments Corporation 8-3 LabWindows VXI Library Reference Manual

EnableSignalInt

Syntax:

BASIC Syntax ret% = EnableSignalInt% ()

C Syntax ret = EnableSignalInt ()

Action: Sensitizes the local CPU to interrupts generated by writes to the local VXI Signal register.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

1 = Signal queue full, will enable after dequeuing
 a signal

0 = Signal interrupts successfully enabled

BASIC Example:
' Enable the signal interrupt.

ret% = EnableSignalInt% ()

C Example:
/* Enable the signal interrupt. */

int ret;

ret = EnableSignalInt ();

VXI Signal Functions Chapter 8

LabWindows VXI Library Reference Manual 8-4 © National Instruments Corporation

GetSignalHandler

Syntax:

BASIC Syntax none

C Syntax func = GetSignalHandler (la)

Action: Returns the address of the current signal interrupt handler for a specified logical address.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

la integer Logical address for which to find address of signal
interrupt handler
 -2 = Unknown (miscellaneous) signal handler

Output parameters:
none

Return value:
func void (*)() Pointer to the current signal interrupt handler for the

specified logical address (NULL = invalid la)

BASIC Example :
none

C Example:
/* Get the address of the signal handler for Logical Address 5. */

void (*func)();
intla;

la = 5;
func = GetSignalHandler (la);

Chapter 8 VXI Signal Functions

© National Instruments Corporation 8-5 LabWindows VXI Library Reference Manual

RouteSignal

Syntax:

BASIC Syntax ret% = RouteSignal% (la%, modemask&)

C Syntax ret = RouteSignal (la, modemask)

Action: Specifies how each type of signal is to be processed for each logical address. A signal can be enqueued
on a global signal queue (for later dequeuing via SignalDeq) or handled at interrupt service routine
time by an installed signal handler for the specified logical address.

Remarks:
Input parameters:

la integer Logical address to set handler for (-1 = all known la’s)
modemask long A bit vector that specifies whether each type of signal is

enqueued or handled by the signal handler. A zero in any
bit position causes signals of the associated type to be queued on the global

signal queue. All other signals are handled by the signal handler.

If la is a Message-Based device:

 Bit Event Signal

14 User-Defined events
13 VXI Reserved events
12 Shared Memory events
11 Unrecognized Command events
10 Request False (REQF) events
9 Request True (REQT) events
8 No Cause Given events

 Bit Response Signal

7 Unused
6 B14
5 Data Out Ready (DOR)
4 Data In Ready (DIR)
3 Protocol Error (ERR)
2 Read Ready (RR)
1 Write Ready (WR)
0 Fast Handshake (FHS)

If la is not a Message-Based device:

 Bit Type of Signal (status/ID) values

15 to 8 Active high bit (if 1 in bits 15 to 8,
respectively)

7 to 0 Active low bit (if 0 in bits 15 to 8,
respectively)

VXI Signal Functions Chapter 8

LabWindows VXI Library Reference Manual 8-6 © National Instruments Corporation

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Invalid la

BASIC Example 1:
' Route signals for Logical Address 4 so that only REQT and REQF signals
' are enqueued on the signal queue, and the rest of the signals are
' handled by the signal handler.

la% = 4
modemask& = &HF9FF&
ret% = RouteSignal% (la%, modemask&)

C Example 1:
/* Route signals for Logical Address 4 so that only REQT and REQF signals

are enqueued on the signal queue, and the rest of the signals are
handled by the signal handler. */

intla;
long modemask;
int ret;

la = 4;
modemask = 0xf9ffL;
ret = RouteSignal (la, modemask);

BASIC Example 2:
' Route Register-Based status/ID values for Logical Address 7 so that all
' status/IDs with a 0 in bits 15 to 12 are queued and all status/IDs
' with a 1 in bits 11 to 8 are handled by the signal handler.

la% = 7
modemask& = &H0FF0&
ret% = RouteSignal% (la%, modemask&)

C Example 2:
/* Route Register-Based status/ID values for Logical Address 7 so that all

status/IDs with a 0 in bits 15 to 12 are queued and all status/IDs with
a 1 in bits 11 to 8 are handled by the signal handler. */

intla;
long modemask;
int ret;

la = 7;
modemask = 0x0ff0L;
ret = RouteSignal (la, modemask);

Chapter 8 VXI Signal Functions

© National Instruments Corporation 8-7 LabWindows VXI Library Reference Manual

SetSignalHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetSignalHandler (la, func)

Action: Replaces the current signal interrupt handler for a logical address with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

la integer Logical address to set the handler
-1 = All known la's
-2 = Unknown (miscellaneous) signal handler

func void (*)() Pointer to the new signal interrupt handler
NULL = DefaultSignalHandler

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Invalid la

BASIC Example:
none

C Example:
/* Set the signal handler for Logical Address 5. */

void func (int);
int la;
int ret;

la = 5;
ret = SetSignalHandler (la, func);

/* This is a sample VXI signal handler. */
void func (sigval)
int sigval; /* signal value received. */
{
}

VXI Signal Functions Chapter 8

LabWindows VXI Library Reference Manual 8-8 © National Instruments Corporation

SignalDeq

Syntax:

BASIC Syntax ret% = SignalDeq% (la%, signalmask&, sigval%)

C Syntax ret = SignalDeq (la, signalmask, sigval)

Action: Gets a signal specified by the signalmask from the signal queue for the specified logical address.

Remarks:
Input parameters:

la integer Logical address to dequeue signal from
(255=VME intrrupt routed to signal queue;-1=any
known la)

signalmask long A bit vector indicating the type of signal to dequeue; a
one in any bit position causes the subroutine to dequeue

signals of the associated type, as follows:

If la is a Message-Based device:

 Bit Event Signal

14 User-Defined events
13 VXI Reserved events
12 Shared Memory events
11 Unrecognized Command events
10 Request False (REQF) events
9 Request True (REQT) events
8 No Cause Given events

 Bit Response Signal

7 Unused
6 B14
5 Data Out Ready (DOR)
4 Data In Ready (DIR)
3 Protocol error (ERR)
2 Read Ready (RR)
1 Write Ready (WR)
0 Fast Handshake (FHS)

If la is not a Message-Based device
or if la = 255 (VME status/ID):

 Bit Type of Signal (status/ID) values

15 to 8 Active high bit (if 1 in bits 15 to 8,
respectively)

7 to 0 Active low bit (if 0 in bits 15 to 8,
respectively)

Output parameter:
sigval integer Signal value dequeued from the signal queue

Chapter 8 VXI Signal Functions

© National Instruments Corporation 8-9 LabWindows VXI Library Reference Manual

Return value:
ret integer Return Status

0 = A signal was returned in sigval
-1 = The signal queue is empty or no match

BASIC Example:
' Dequeue any type of signal from the signal queue for Logical Address 10.

la% = 10
signalmask& = &HFFFF&
ret% = SignalDeq% (la%, signalmask&, sigval%)
IF ret% <> 0 THEN

' Empty signal queue for Logical Address 10.
END IF

C Example:
/* Dequeue any type of signal from the signal queue for Logical Address

10. */

int ret;
int la;
int sigval;
long signalmask;

la = 10;
signalmask = 0xffffL;
ret = SignalDeq (la, signalmask, &sigval);
if (ret != 0)

/* Empty signal queue for Logical Address 10. */;

VXI Signal Functions Chapter 8

LabWindows VXI Library Reference Manual 8-10 © National Instruments Corporation

SignalEnq

Syntax:

BASIC Syntax ret% = SignalEnq% (sigval%)

C Syntax ret = SignalEnq (sigval)

Action: Puts a signal on the tail of the signal queue.

Remarks:
Input parameter:

sigval integer Value to enqueue at the tail of the signal queue

Output parameters:
none

Return value:
ret integer Return Status

0 = Signal was queued
-1 = Signal was not queued because the signal queue

is full
-2 = Signal was not queued because the logical address

is invalid

BASIC Example:
' Enqueue signal &HFD02 (REQT for Logical Address 2) at the tail of the
' signal queue.

sigval% = &HFD02
ret% = SignalEnq% (sigval%)
IF ret% <> 0 THEN

' signal queue is full.
END IF

C Example:
/* Enqueue signal 0xfd02 (REQT for Logical Address 2) at the tail of the

signal queue. */

int ret;
int sigval;

sigval = 0xfd02;
ret = SignalEnq (sigval);
if (ret != 0)

/* signal queue is full. */;

Chapter 8 VXI Signal Functions

© National Instruments Corporation 8-11 LabWindows VXI Library Reference Manual

SignalJam

Syntax:

BASIC Syntax ret% = SignalJam% (sigval%)

C Syntax ret = SignalJam (sigval)

Action: Puts a signal on the head of the signal queue.

Remarks:
Input parameter:

sigval integer Signal value to put on the head of the queue

Output parameters:
none

Return value:
ret integer Return Status

0 = Signal was queued
-1 = Signal was not queued because the signal queue

is full
-2 = Signal was not queued because the logical address

is invalid

BASIC Example:
' Put signal &HFD02 (REQT for Logical Address 2) on the head of the signal
' queue.

sigval% = &HFD02
ret% = SignalJam% (sigval%)
IF ret% <> 0 THEN

' signal queue is full.
END IF

C Example:
/* Put signal 0xfd02 (REQT for Logical Address 2) on the head of the

signal queue. */

int ret;
int sigval;

sigval = 0xfd02;
ret = SignalJam (sigval);
if (ret != 0)

/* signal queue is full. */;

VXI Signal Functions Chapter 8

LabWindows VXI Library Reference Manual 8-12 © National Instruments Corporation

WaitForSignal

Syntax:

BASIC Syntax ret% = WaitForSignal% (la%, signalmask&,
 timeout&, retsignal%, retsignalmask&)

C Syntax ret = WaitForSignal (la, signalmask, timeout,
 retsignal, retsignalmask)

Action: Waits for a specified type(s) of signal or status/ID to be received from a specified logical address.

Remarks:
Input parameters:

la integer Logical address of device sourcing the signal
(255=VME intrrupt routed to signal queue;-1=any
known la)

signalmask long A bit vector indicating the type(s) of signals that the
application waits for; a one in any bit position causes
the subroutine to detect signals of the associated type,
as follows:

If la is a Message-Based device:

 Bit Event Signal

14 User-Defined events
13 VXI Reserved events
12 Shared Memory events
11 Unrecognized Command events
10 Request False (REQF) events
9 Request True (REQT) events
8 No Cause Given events

 Bit Response Signal

7 Unused
6 B14
5 Data Out Ready (DOR)
4 Data In Ready (DIR)
3 Protocol Error (ERR)
2 Read Ready (RR)
1 Write Ready (WR)
0 Fast Handshake (FHS)

If la is not a Message-Based device
or if la = 255 (VME status/ID):

 Bit Type of Signal (status/ID) values

15 to 8 Active high bit (if 1 in bits 15 to 8,
respectively)

7 to 0 Active low bit (if 0 in bits 15 to 8,
respectively)

timeout long Time to wait until signal occurs (0 = forever)

Chapter 8 VXI Signal Functions

© National Instruments Corporation 8-13 LabWindows VXI Library Reference Manual

Output parameters:
retsignal integer Signal received
retsignalmask long A bit vector indicating the type(s) of signals that the

application received. The bits have the same meaning as
that of the input signalmask.

Return value:
ret integer Return Status

0 = One of the specified signals was received
-1 = Invalid la
-2 = Timeout occurred while waiting for the specified

 signal(s)

BASIC Example:
' Wait 2 seconds for REQT signal from Logical Address 5.

la% = 5
signalmask& = &H0200&
timeout& = 2000& ' 2000 milliseconds = 2 seconds.
ret% = WaitForSignal% (la%, signalmask&, timeout&, retsignal%,

retsignalmask&)
IF ret% <> 0 THEN

' signal received within specified waiting period.
END IF

C Example:
/* Wait 2 seconds for REQT signal from Logical Address 5. */

int ret;
int la;
long signalmask;
long timeout;
int retsignal;
long retsignalmask;

la = 5;
signalmask = 0x0200L;
timeout = 2000L; /* 2000 milliseconds = 2 seconds. */
ret = WaitForSignal (la, signalmask, timeout, &retsignal,

&retsignalmask);
if (ret == 0)

/* signal received within specified waiting period. */;

VXI Signal Functions Chapter 8

LabWindows VXI Library Reference Manual 8-14 © National Instruments Corporation

Default Handler for VXI Signal Functions
The NI-VXI software provides the following default handler for the VXI signals. This is a sample handler that
InitVXIlibrary installs when it initializes the software at the beginning of the application program. Default
handlers give you the minimal and most common functionality required for a VXI system. They are given in source
code form on your NI-VXI distribution media to be used as examples/prototypes for extending their functionality to
a particular application.

DefaultSignalHandler

Syntax:

BASIC Syntax none

C Syntax DefaultSignalHandler (sigval)

Action: Handles the VXI signals. It does nothing with the signals, with the exception of the VXIbus specification
1.2 Event signal Unrecognized Command. It calls WSabort if the Unrecognized Command Event is
received.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

sigval integer Actual 16-bit VXI signal

Output parameters:
none

Return value:
none

© National Instruments Corporation 9-1 LabWindows VXI Library Reference Manual

Chapter 9
VXI Interrupt Functions

This chapter describes the functions in the LabWindows VXI Interrupt Library. VXI interrupts are a basic form of
asynchronous communication used by VXI devices with VXI interrupter support. In VME, a device asserts a VME
interrupt line and the VME interrupt handler device acknowledges the interrupt. During the VME interrupt
acknowledge cycle, an 8-bit status/ID value is returned. On most 680X0-based VME CPUs, this 8-bit value is used
as a local interrupt vector value and routed directly to the 680X0 processor. This value is used to look up which
interrupt service routine to invoke. In VXI, however, the VXI interrupt acknowledge cycle returns (at a minimum) a
16-bit status/ID value. This 16-bit status/ID value is data, not a vector base location. The definition of the 16-bit
vector is specified by the VXIbus specification and is the same as for the VXI signal. The lower 8 bits of the
status/ID value form the VXI logical address of the interrupting device, while the upper 8 bits specify the reason for
interrupting.

The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The following 11
functions are described in this chapter:

• AcknowledgeVXIint

• AssertVXIint

• DeAssertVXIint

• DisableVXIint

• DisableVXItoSignalInt

• EnableVXIint

• EnableVXItoSignalInt

• GetVXIintHandler

• RouteVXIint

• SetVXIintHandler

• VXIintAcknowledgeMode

VXI Interrupt Functions Chapter 9

LabWindows VXI Library Reference Manual 9-2 © National Instruments Corporation

AcknowledgeVXIint

Syntax:

BASIC Syntax ret% = AcknowledgeVXIint% (controller%, level%,
 statusId&)

C Syntax ret = AcknowledgeVXIint (controller, level,
 statusId)

Action: Performs an IACK cycle on the VXIbus on the specified controller (either an embedded CPU or an
extended controller) for a particular VXI interrupt level. VXI interrupts are automatically acknowledged
when enabled by EnableVXItoSignalInt and EnableVXIint. Use this function to manually
acknowledge VXI interrupts that the local device is not enabled to receive.

Note: This function is intended for debug purposes only. VXI interrupts are automatically
acknowledged when the local CPU is sensitized to interrupts via the EnableVXIint or
EnableVXItoSignalInt functions.

Remarks:
Input parameters:

controller integer Controller on which to acknowledge interrupt
level integer Interrupt level to acknowledge

Output parameter:
statusId long Status/ID obtained during IACK cycle

Return value:
ret integer Return Status

0 = IACK cycle completed successfully
-1 = Unsupportable function (no hardware support for

 IACK)
-2 = Invalid controller
-3 = Invalid level
-4 = Bus error occurred during IACK cycle

BASIC Example:
' Acknowledge Interrupt 4 on the local CPU (or first extended controller).

controller% = -1
level% = 4
ret% = AcknowledgeVXIint% (controller%, level%, statusId&)

C Example:
/* Acknowledge Interrupt 4 on the local CPU (or first extended

controller). */

int controller;
int level;
long statusId;
int ret;

controller = -1;
level = 4;
ret = AcknowledgeVXIint (controller, level, &statusId);

Chapter 9 VXI Interrupt Functions

© National Instruments Corporation 9-3 LabWindows VXI Library Reference Manual

AssertVXIint

Syntax:

BASIC Syntax ret% = AssertVXIint% (controller%, level%,
 statusId&)

C Syntax ret = AssertVXIint (controller, level, statusId)

Action: Asserts a VXI interrupt line on the specified controller (either an embedded CPU or an extended
controller). When the VXI interrupt is acknowledged (a VXI IACK cycle occurs), the specified status/ID
is passed to the device that acknowledges the VXI interrupt.

Remarks:
Input parameters:

controller integer Controller on which to assert interrupt
level integer Interrupt level to assert
statusId long Status/ID to present during IACK cycle

Output parameters:
none

Return value:
ret integer Return Status

0 = Interrupt line asserted successfully
-1 = Unsupportable function (no hardware support for

 VXI interrupter)
-2 = Invalid controller
-3 = Invalid level
-5 = VXI interrupt still pending from previous

 AssertVXIint

BASIC Example:
' Assert Interrupt 4 on the local CPU (or first extended controller) with
' status/ID of &H1111&.

controller% = -1
level% = 4
statusId& = &H1111&
ret% = AssertVXIint% (controller%, level%, statusId&)

C Example:
/* Assert Interrupt 4 on the local CPU (or first extended controller) with

status/ID of 0x1111. */

int ret;
int controller;
int level;
long statusId;

controller = -1;
level = 4;
statusId = 0x1111L;
ret = AssertVXIint (controller, level, statusId);

VXI Interrupt Functions Chapter 9

LabWindows VXI Library Reference Manual 9-4 © National Instruments Corporation

DeAssertVXIint

Syntax:

BASIC Syntax ret% = DeAssertVXIint% (controller%, level%)

C Syntax ret = DeAssertVXIint (controller, level)

Action: Asynchronously deasserts a VXI interrupt line on the specified controller (either an embedded CPU or an
extended controller) previously asserted by the function AssertVXIint.

Note: This function is for debug purposes only. Deasserting a VXI interrupt can cause a violation of
the VME and VXIbus specifications.

Remarks:
Input parameters:

controller integer Controller on which to deassert interrupt
level integer Interrupt level to deassert

Output parameters:
none

Return value:
ret integer Return Status

0 = Interrupt line deasserted successfully
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid level

BASIC Example:
' Deassert Interrupt 4 on the local CPU (or first extended controller).

controller% = -1
level% = 4
ret% = DeAssertVXIint% (controller%, level%)

C Example:
/* Deassert Interrupt 4 on the local CPU (or first extended

controller). */

int controller;
int level;
int ret;

controller = -1;
level = 4;
ret = DeAssertVXIint (controller, level);

Chapter 9 VXI Interrupt Functions

© National Instruments Corporation 9-5 LabWindows VXI Library Reference Manual

DisableVXIint

Syntax:

BASIC Syntax ret% = DisableVXIint% (controller%, levels%)

C Syntax ret = DisableVXIint (controller, levels)

Action: Desensitizes the local CPU to specified VXI interrupts generated in the specified controller that the
RouteVXIint function routed to be handled as VXI interrupts (not as VXI signals). The RM assigns
the interrupt levels automatically. Use the GetDevInfo functions to retrieve the assigned levels.

Remarks:
Input parameters:

controller integer Controller (embedded or extended) to disable interrupts
levels integer Vector of VXI interrupt levels to disable. Bits 6 to 0

correspond to VXI interrupt levels 7 to 1, respectively.
1 = Disable for appropriate level
0 = Leave at current setting

Output parameters:
none

Return value:
ret integer Return Status

0 = VXI interrupt disabled
-1 = No hardware support
-2 = Invalid controller

BASIC Example:
' Disable VXI Interrupt 4 on the local CPU (or first extended controller).

controller% = -1 ' Local CPU or first frame.
levels% = &H0008 ' Interrupt level 4.
ret% = DisableVXIint% (controller%, levels%)

C Example:
/* Disable VXI Interrupt 4 on the local CPU (or first extended

controller). */

int controller;
int levels;
int ret;

controller = -1; /** Local CPU or first frame. **/
levels = (int)(1<<3); /** Interrupt level 4. **/
ret = DisableVXIint (controller, levels);

VXI Interrupt Functions Chapter 9

LabWindows VXI Library Reference Manual 9-6 © National Instruments Corporation

DisableVXItoSignalInt

Syntax:

BASIC Syntax ret% = DisableVXItoSignalInt% (controller%,
 levels%)

C Syntax ret = DisableVXItoSignalInt (controller, levels)

Action: Desensitizes the local CPU to specified VXI interrupts generated in the specified controller that the
RouteVXIint function routed to be handled as VXI signals.

Remarks:
Input parameters:

controller integer Controller (embedded or extended) to disable interrupts
levels integer Vector of VXI interrupt levels to disable. Bits 6 to 0

correspond to VXI interrupt levels 7 to 1, respectively.
1 = Disable for appropriate level
0 = Leave at current setting

Output parameters:
none

Return value:
ret integer Return Status

0 = VXI interrupt disabled
-1 = No hardware support
-2 = Invalid controller specified

BASIC Example:
' Disable VXI Interrupt 6 on the local CPU (or first extended controller).

controller% = -1 ' Local CPU or first frame.
levels% = &H0020 ' Interrupt level 6.
ret% = DisableVXItoSignalInt% (controller%, levels%)

C Example:
/* Disable VXI Interrupt 6 on the local CPU (or first extended

controller). */

int controller;
int levels;
int ret;

controller = -1; /** Local CPU or first frame. **/
levels = (int)(1<<5); /** Interrupt level 6. **/
ret = DisableVXItoSignalInt (controller, levels);

Chapter 9 VXI Interrupt Functions

© National Instruments Corporation 9-7 LabWindows VXI Library Reference Manual

EnableVXIint

Syntax:

BASIC Syntax ret% = EnableVXIint% (controller%, levels%)

C Syntax ret = EnableVXIint (controller, levels)

Action: Sensitizes the local CPU to specified VXI interrupts generated in the specified controller that the
RouteVXIint function routed to be handled as VXI interrupts (not as VXI signals). The RM assigns
the interrupt levels automatically. Use the GetDevInfo functions to retrieve the assigned levels.
Notice that each VXI interrupt is physically enabled only if the RouteVXIint function has specified
that the VXI interrupt be routed to be handled as a VXI/VME interrupt.

Remarks:
Input parameters:

controller integer Controller (embedded or extended) to enable interrupts
levels integer Vector of VXI interrupt levels to enable. Bits 6 to 0

correspond to VXI interrupt levels 7 to 1, respectively.
1 = Enable for appropriate level
0 = Leave at current setting

Output parameters:
none

Return value:
ret integer Return Status

0 = VXI interrupt enabled
-1 = No hardware support
-2 = Invalid controller specified

BASIC Example:
' Enable VXI Interrupt 4 on the local CPU (or first extended controller).

controller% = -1 ' Local CPU or first frame.
levels% = &H0008 ' Interrupt level 4.
ret% = EnableVXIint% (controller%, levels%)

C Example:
/* Enable VXI Interrupt 4 on the local CPU (or first extended

controller). */

int controller;
int levels;
int ret;

controller = -1; /** Local CPU or first frame. **/
levels = (int)(1<<3); /** Interrupt level 4. **/
ret = EnableVXIint (controller, levels);

VXI Interrupt Functions Chapter 9

LabWindows VXI Library Reference Manual 9-8 © National Instruments Corporation

EnableVXItoSignalInt

Syntax:

BASIC Syntax ret% = EnableVXItoSignalInt% (controller%,
 levels%)

C Syntax ret = EnableVXItoSignalInt (controller, levels)

Action: Sensitizes the local CPU to specified VXI interrupts generated in the specified controller that the
RouteVXIint function routed to be handled as VXI interrupts (not as VXI signals). The RM assigns
the interrupt levels automatically. Use the GetDevInfo functions to retrieve the assigned levels.
Notice that each VXI interrupt is physically enabled only if the RouteVXIint function has specified
that the VXI interrupt be routed to be handled as a VXI signal.

Remarks:
Input parameters:

controller integer Controller (embedded or extended) to enable interrupts
levels integer Vector of VXI interrupt levels to enable. Bits 6 to 0

correspond to VXI interrupt levels 7 to 1, respectively.
1 = Enable for appropriate level
0 = Leave at current setting

Output parameters:
none

Return value:
ret integer Return Status

0 = VXI interrupt enabled
-1 = No hardware support
-2 = Invalid controller specified

BASIC Example:
' Enable VXI Interrupt 6 on the local CPU (or first extended controller).

controller% = -1 ' Local CPU or first frame.
levels% = &H0020 ' Interrupt level 6.
ret% = EnableVXItoSignalInt% (controller%, levels%)

C Example:
/* Enable VXI Interrupt 6 on the local CPU (or first extended

controller). */

int controller;
int levels;
int ret;

controller = -1; /** Local CPU or first frame. **/
levels = (int)(1<<5); /** Interrupt level 6. **/
ret = EnableVXItoSignalInt (controller, levels);

Chapter 9 VXI Interrupt Functions

© National Instruments Corporation 9-9 LabWindows VXI Library Reference Manual

GetVXIintHandler

Syntax:

BASIC Syntax none

C Syntax func = GetVXIintHandler (level)

Action: Returns the address of the current interrupt handler for a specified VXIbus interrupt level.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

level integer VXI interrupt level associated with the handler

Output parameters:
none

Return value:
func void (*)() Pointer to the current interrupt handler for a specified

VXIbus interrupt level
(NULL = invalid level or no hardware support)

BASIC Example:
none

C Example:
/* Get the address of the interrupt handler for VXI interrupt level 4. */

void (*func)();
intlevel;

level = 4;
func = GetVXIintHandler (level);

VXI Interrupt Functions Chapter 9

LabWindows VXI Library Reference Manual 9-10 © National Instruments Corporation

RouteVXIint

Syntax:

BASIC Syntax ret% = RouteVXIint% (controller%, Sroute%)

C Syntax ret = RouteVXIint (controller, Sroute)

Action: Specifies whether to route the status/ID value retrieved from a VXI interrupt acknowledge cycle to the
VXI interrupt handler or to the signal processing routine. RouteVXIint dynamically enables and
disables the appropriate VXI interrupts based on the current settings from calls to EnableVXIint and
EnableVXItoSignalInt.

Remarks:
Input parameters:

controller integer Controller (embedded or extended) to specify route for
Sroute integer A bit vector that specifies whether to handle a VXI/VME

interrupt as a signal or route it to the VXI/VME interrupt
handler routine.
Bits 6 to 0 correspond to VXI interrupt levels 7 to 1,
respectively.

1 = Handle VXI interrupt for this level as a signal
0 = Handle VXI interrupt as a VXI interrupt

Bits 14 to 8 correspond to VXI interrupt levels 7 to 1,
respectively.

1 = Route as 8-bit VME status/ID
0 = Route as 16-bit VXI status/ID

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = No hardware support

BASIC Example:
' Route VXI interrupts for level 4 (on the local controller) to the VXI
' interrupt handler and the rest of the levels to the signal processor.

controller% = -1
Sroute% = &HFFF7
ret% = RouteVXIint% (controller%, Sroute%)

Chapter 9 VXI Interrupt Functions

© National Instruments Corporation 9-11 LabWindows VXI Library Reference Manual

C Example:
/* Route VXI interrupts for level 4 (on the local controller) to the

VXI interrupt handler and the rest of the levels to the signal
processor. */

int controller;
int Sroute;
int ret;

controller = -1;
Sroute = ~(1<<3);
ret = RouteVXIint (controller, Sroute);

VXI Interrupt Functions Chapter 9

LabWindows VXI Library Reference Manual 9-12 © National Instruments Corporation

SetVXIintHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetVXIintHandler (levels, func)

Action: Replaces the current interrupt handler for the specified VXIbus interrupt levels with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

levels integer Bit vector of VXI interrupt levels. Bits 6 to 0 correspond
to VXI interrupt levels 7 to 1, respectively.

1 = Set
0 = Do not set handler

func void (*)() Pointer to the new VXI interrupt handler
(NULL = DefaultVXIintHandler)

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = No hardware support

BASIC Example:
none

C Example:
/* Set the VXI interrupt handler for VXI interrupt level 4. */

void func (int, int, long) ;
intlevels;
intret;

levels = (int)(1<<3);
ret = SetVXIintHandler (levels, func);

/* This is a sample VXI interrupt handler. */
void func (controller, level, statusId)
int controller; /* Controller VXI interrupt received from. */
int level; /* VXI interrupt level. */
long statusId; /* 32-bit VXI interrupt acknowledge (IACK)

status/ID. */
{
}

Chapter 9 VXI Interrupt Functions

© National Instruments Corporation 9-13 LabWindows VXI Library Reference Manual

VXIintAcknowledgeMode

Syntax:

BASIC Syntax ret% = VXIintAcknowledgeMode% (controller%,
modes%)

C Syntax ret = VXIintAcknowledgeMode (controller, modes)

Action: Specifies whether to handle the VXI interrupt acknowledge cycle for the specified controller (embedded
or extended) for the specified levels as Release On AcKnowledge (ROAK) interrupts or as Release On
Register Access (RORA) interrupts. If the VXI interrupt level is handled as a RORA VXI interrupt,
further local interrupt generation is automatically inhibited while the VXI interrupt acknowledge is
performed. EnableVXIint or EnableVXItoSignalInt must be called to re-enable the
appropriate VXI interrupt level whenever a RORA VXI interrupt occurs.

Remarks:
Input parameters:

controller integer Controller (embedded or extended) to specify route for
modes integer Vector of VXI interrupt levels to set to RORA/ROAK

interrupt acknowledge mode. Bits 6 to 0 correspond to VXI
interrupt levels 7 to 1, respectively.

0 = Set to ROAK VXI interrupt for corresponding level
1 = Set to RORA VXI interrupt for corresponding level

Output parameters:
none

Return value:
ret integer Return Status

0 = VXI interrupt enabled
-1 = No hardware support
-2 = Invalid controller specified
-5 = Invalid modes specified

BASIC Example:
' Set VXI Interrupt levels 2 and 3 on the local CPU (or first extended
' controller) to be RORA interrupters--set reset to ROAK.

controller% = -1 ' Local CPU or first frame.
modes% = &H0006 ' Levels 2 and 3 are RORA mode.
ret% = VXIintAcknowledgeMode% (controller%, modes%)

C Example:
/* Set VXI Interrupt levels 2 and 3 on the local CPU (or first extended

controller) to be RORA interrupters--set reset to ROAK. */

int controller;
int modes;
int ret;

controller = -1; /** Local CPU or first frame. **/
/** Levels 2 and 3 are RORA mode. **/

modes = (int)((1<<1) | (1<<2));
ret = VXIintAcknowledgeMode (controller, modes);

VXI Interrupt Functions Chapter 9

LabWindows VXI Library Reference Manual 9-14 © National Instruments Corporation

Default Handler for VXI Interrupt Functions
The NI-VXI software provides the following default handler for the VXI interrupts. This is a sample handler that
InitVXIlibrary installs when it initializes the software at the beginning of the application program. Default
handlers give you the minimal and most common functionality required for a VXI system. They are given in source
code form on your NI-VXI distribution media to be used as examples/prototypes for extending their functionality to
a particular application.

DefaultVXIintHandler

Syntax:

BASIC Syntax none

C Syntax DefaultVXIintHandler (controller, level, statusId)

Action: Handles the VXI interrupts. The global variable VXIintController is set to controller.
VXIintLevel is set to level. VXIintStatusId is set to statusId.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

controller integer Controller (embedded or extended) that interrupted
level integer The received VXI interrupt level
statusId long Status/ID obtained during IACK cycle (if it is a 16-bit

VXI IACK value, it may be equivalent to a VXI signal)

Output parameters:
none

Return value:
none

© National Instruments Corporation 10-1 LabWindows VXI Library Reference Manual

Chapter 10
VXI Trigger Functions

This chapter describes the functions in the LabWindows VXI Trigger Library. The trigger functions fall into three
categories:

• Source trigger functions act as a standard interface for asserting (sourcing) triggers, as well as for detecting
acknowledgments from accepting devices.

• Acceptor trigger functions act as a standard interface for sensing (accepting) triggers, as well as for sending
acknowledgments back to the sourcing device.

• Map trigger functions act as configuration tools for multiframe and local support for VXI triggers.

The actual capabilities of specific systems are based on the triggering capabilities of the hardware devices involved
(both the sourcing and accepting devices).

The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The following 13
functions are described in this chapter:

• AcknowledgeTrig

• DisableTrigSense

• EnableTrigSense

• GetTrigHandler

• MapTrigToTrig

• SetTrigHandler

• SrcTrig

• TrigAssertConfig

• TrigCntrConfig

• TrigExtConfig

• TrigTickConfig

• UnMapTrigToTrig

• WaitForTrig

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-2 © National Instruments Corporation

AcknowledgeTrig

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using AcknowledgeTTLtrig or AcknowledgeECLtrig with the same parameters as described
below.

Syntax:

BASIC Syntax ret% = AcknowledgeTrig% (controller%, line%)

C Syntax ret = AcknowledgeTrig (controller, line)

Action: Acknowledges the specified trigger on the specified controller. The trigger interrupt handler is called
after a trigger is sensed. If the sensed protocol requires an acknowledge (ASYNC or SEMI-SYNC
protocols), the application should call AcknowledgeTrig after performing any device-dependent
operations.

Remarks:
Input parameters:

controller integer Controller on which to acknowledge trigger interrupt
line integer TTL, ECL, or external trigger line to acknowledge

 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13ECL trigger lines 0 to 5

40 to 49 External source/destination (GPIO 0 to 9)
Output parameters:

none

Return value:
ret integer Return Status

1 = Successful, protocol has no need to acknowledge
0 = Successful

-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported

-12 = line not configured for sensing
-17 = No trigger sensed
-18 = line not configured for external SEMI-SYNC

BASIC Example:
' Acknowledge the ECL trigger interrupt for line 1 on the local CPU
' (or the first extended controller).

controller% = -1
line% = 9
ret% = AcknowledgeTrig% (controller%, line%)

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-3 LabWindows VXI Library Reference Manual

C Example:
/* Acknowledge the ECL trigger interrupt for line 1 on the local CPU

(or the first extended controller). */

int controller;
int line;
int ret;

controller = -1;
line = 9; /* ECL line + 8 */
ret = AcknowledgeTrig (controller, line);

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-4 © National Instruments Corporation

DisableTrigSense

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using DisableTTLsense or DisableECLsense with the same parameters as described below.

Syntax:

BASIC Syntax ret% = DisableTrigSense% (controller%, line%)

C Syntax ret = DisableTrigSense (controller, line)

Action: Disables the sensing of the specified trigger line that was enabled by EnableTrigSense.

Remarks:
Input parameters:

controller integer Controller on which to disable sensing
line integer TTL, ECL, or external trigger line to disable sensing

 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13ECL trigger lines 0 to 5

50 TIC counter
60 TIC tick timers

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported

-12 = line not configured for sensing

BASIC Example:
' Disable sensing of ECL line 1 on the local CPU
' (or the first extended controller).

controller% = -1
line% = 9
ret% = DisableTrigSense% (controller%, line%)

C Example:
/* Disable sensing of ECL line 1 on the local CPU

(or the first extended controller). */

int ret;
int controller;
int line;

controller = -1;
line = 9; /* ECL line + 8 */
ret = DisableTrigSense (controller, line);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-5 LabWindows VXI Library Reference Manual

EnableTrigSense

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using EnableTTLsense or EnableECLsense with the same parameters as described below.

Syntax:

BASIC Syntax ret% = EnableTrigSense% (controller%, line%,
 prot%)

C Syntax ret = EnableTrigSense (controller, line, prot)

Action: Enables the sensing of the specified trigger line, or starts up the counter or tick timer for the specified
protocol. When the protocol is sensed, the trigger interrupt handler is invoked. In order to start up the
counter or tick timers, you must first call either the TrigCntrConfig or TrigTickConfig
function, respectively.

Remarks:
Input parameters:

controller integer Controller on which to enable sensing
line integer TTL, ECL, or external trigger line to enable sensing

 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13ECL trigger lines 0 to 5

50 TIC counter
60 TIC tick timers

prot integer Protocol to use
2 = START
3 = STOP
4 = SYNC
5 = SEMI-SYNC
6 = ASYNC

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line or prot
-4 = line not supported
-5 = prot not supported
-7 = line already in use

-12 = line not configured for use in sensing
-15 = Previous operation incomplete

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-6 © National Instruments Corporation

BASIC Example:
' Enable sensing of ECL line 1 on the local CPU
' (or the first extended controller) for SEMI-SYNC protocol.

controller% = -1
line% = 9
prot% = 5
ret% = EnableTrigSense% (controller%, line%, prot%)

C Example:
/* Enable sensing of ECL line 1 on the local CPU (or the first extended

controller) for SEMI-SYNC protocol. */

int ret;
int controller;
int line;
int prot;

controller = -1;
line = 9; /* ECL line + 8 */
prot = 5;
ret = EnableTrigSense (controller, line, prot);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-7 LabWindows VXI Library Reference Manual

GetTrigHandler

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using GetTTLtrigHandler or GetECLtrigHandler with the same parameters as described
below.

Syntax:

BASIC Syntax none

C Syntax func = GetTrigHandler (line)

Action: Returns the address of the current trigger interrupt handler for a specified trigger line, counter, or timer.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

line integer TTL, ECL trigger line or counter/tick
 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC tick timers

Output parameters:
none

Return value:
func void (*)() Pointer to the current trigger interrupt handler for a

specified trigger line
NULL = Invalid line or no hardware support

BASIC Example:
none

C Example:
/* Get the address of the ECL trigger interrupt handler for

ECL trigger line 1. */

void (*func)();
int line;

line = 9; /* ECL line + 8 */
func = GetTrigHandler (line);

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-8 © National Instruments Corporation

MapTrigToTrig

Syntax:

BASIC Syntax ret% = MapTrigToTrig% (controller%, srcTrig%,
 destTrig%, mapmode%)

C Syntax ret = MapTrigToTrig (controller, srcTrig,
 destTrig, mapmode)

Action: Maps the specified TTL, ECL, Star X, Star Y, external connection (GPIO), or miscellaneous external
signal line to another. The support actually present is completely hardware-dependent and is reflected in
the error status and in hardware-specific documentation.

Remarks:
Input parameters:

controller integer Controller on which to map signal lines
srcTrig integer Source line to map to destination
destTrig integer Destination line to map from source

 Value Source or Destination
0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

14 to 26 Star X lines 0 to 12 *
27 to 39 Star Y lines 0 to 12 *
40 to 49 External source/destination (GPIO 0 to 9)

40 Front panel In (connector 1)
41 Front panel Out (connector 2)
42 ECL bypass from front panel
43 Connection to EXTCLK input pin

44 to 49 Hardware-dependent GPIOs 4 to 9
50 TIC counter pulse output (TCNTR)
51 TIC counter finished output (GCNTR)
60 TIC TICK1 tick timer output
61 TIC TICK2 tick timer output

mapmode integer Signal conditioning mode (0 = no conditioning)
 Bit Conditioning Effect
0 Synchronize with next CLK10 edge
1 Invert signal polarity
2 Pulse stretch to one CLK minimum
3 Use EXTCLK (not CLK10) for conditioning

All other values are reserved for future expansion.
Output parameters:

none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupported function, no mapping capability
-2 = Invalid controller
-8 = Unsupported srcTrig
-9 = Unsupported destTrig

-10 = Unsupported mapmode
-11 = Already mapped, must use UnMapTrigToTrig

* Star X and Star Y are not currently supported lines.

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-9 LabWindows VXI Library Reference Manual

BASIC Example:
' Map TTL line 4 on the local CPU (or first extended controller) to go
' out of the front panel with no signal conditioning.

controller% = -1 ' Local CPU
srcTrig% = 4' TTL line 4.
destTrig% = 41 ' Front panel out connector.
mapmode% = 0' No conditioning.
ret% = MapTrigToTrig% (controller%, srcTrig%, destTrig%, mapmode%)

C Example:
/* Map TTL line 4 on the local CPU (or first extended controller) to go

out of the front panel with no signal conditioning. */

int controller;
int srcTrig;
int destTrig;
int mapmode;
int ret;

controller = -1; /* Local CPU */
src = 4; /* TTL line 4. **/
dest = 41; /* Front panel out connector. **/
mapmode = 0; /* No conditioning. */
ret = MapTrigToTrig (controller, srcTrig, destTrig, mapmode);

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-10 © National Instruments Corporation

SetTrigHandler

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using SetTTLtrigHandler or SetECLtrigHandler with the same parameters as described
below.

Syntax:

BASIC Syntax none

C Syntax ret = SetTrigHandler (lines, func)

Action: Replaces the current TTL/ECL trigger, counter, or tick timer interrupt handler for a specified trigger
source with the function func.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

lines integer Bit vector of trigger lines (1 = set, 0 = do not set)
 Value Trigger Line(s) to Set
0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5
14 TIC counter
15 TIC tick timers

func void (*)() Pointer to the new trigger interrupt handler
0 = DefaultTrigHandler
1 = DefaultTrigHandler2

Other = Address of new trigger interrupt handler

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = No hardware support

BASIC Example:
none

C Example:
/* Set the trigger interrupt handler for ECL trigger line 1. */

void func (int, int, int);
int lines;
int ret;

lines = (int)(1<<(3+8)); /* ECL line + 8 */
ret = SetTrigHandler (lines, func);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-11 LabWindows VXI Library Reference Manual

SrcTrig

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using SrcTTLtrig or SrcECLtrig with the same parameters as described below.

Syntax:

BASIC Syntax ret% = SrcTrig% (controller%, line%, prot%,
 timeout&)

C Syntax ret = SrcTrig (controller, line, prot, timeout)

Action: Sources the specified protocol on the specified TTL, ECL, or external trigger line in the specified
controller.

Remarks:
Input parameters:

controller integer Controller on which to source trigger line
line integer Trigger line to source

 Value Trigger Line
0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

40 to 49 External source/destination (GPIO 0 to 9) *
50 TIC counter **
60 TIC tick timers **

prot integer Protocol to use
0 = ON
1 = OFF
2 = START
3 = STOP
4 = SYNC
5 = SEMI-SYNC
6 = ASYNC
7 = SEMI-SYNC and wait for Acknowledge
8 = ASYNC and wait for Acknowledge

ffffh = Abort previous acknowledge pending (5 and 6)
timeout long Timeout value in milliseconds

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line or prot
-4 = line not supported
-5 = prot not supported
-6 = Timeout occurred waiting for acknowledge
-7 = line already in use

-12 = line not configured for use in sourcing
-15 = Previous operation incomplete
-16 = Previous acknowledge still pending

* Supports ON, OFF, START, STOP, and SYNC protocols only
** Supports SYNC and SEMI-SYNC protocols only

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-12 © National Instruments Corporation

BASIC Example:
' Source ECL line 1 on the local CPU (or the first extended controller)
' for SEMI-SYNC protocol.

controller% = -1
line% = 9
prot% = 5
timeout& = 0&
ret% = SrcTrig% (controller%, line%, prot%, timeout&)

C Example:
/* Source ECL line 1 on the local CPU (or the first extended controller)

for SEMI-SYNC protocol. */

int ret;
int controller;
int line;
int prot;
long timeout;

controller = -1;
line = 9; /* ECL line + 8 */
prot = 5;
timeout = 0L;
ret = SrcTrig (controller, line, prot, timeout);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-13 LabWindows VXI Library Reference Manual

TrigAssertConfig

Syntax:

BASIC Syntax ret% = TrigAssertConfig% (controller%, line%,
 configmode%)

C Syntax ret = TrigAssertConfig (controller, line,
 configmode)

Action: Configures the specified TTL/ECL trigger line assertion method. TTL/ECL triggers can be (re-)
synchronized to CLK10 on a per-line basis. You can globally select on all TTL/ECL trigger lines
whether to synchronize to the rising or falling edge of CLK10. In addition, you can specify a trigger
line to partake in SEMI-SYNC accepting with external acknowledge.

Remarks:
Input parameters:

controller integer Controller on which to configure assertion mode
line integer Trigger line to configure

 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13ECL trigger lines 0 to 5
 ffffh General assertion configuration (all lines)

configmode integer Configuration mode
 Bit Specific Line Configuration Modes
0 1 = Synchronize falling edge of CLK10

0 = Synchronize rising edge of CLK10
 Bit General Configuration Modes
0 1 = Pass trigger through asynchronously

0 = Synchronize with next CLK10 edge
1 1 = Participate in SEMI-SYNC with

external
trigger acknowledge protocol

0 = Do not participate
All other values are reserved for future expansion.

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported

-10 = Invalid configmode

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-14 © National Instruments Corporation

BASIC Example:
' Configure all TTL/ECL trigger lines generally to synchronize to the
' falling edge of CLK10 (as opposed to the rising edge).

controller% = -1
line% = -1
configmode% = 1
ret% = TrigAssertConfig% (controller%, line%, configmode%)

C Example:
/* Configure all TTL/ECL trigger lines generally to synchronize to the

falling edge of CLK10 (as opposed to the rising edge). */

int ret;
int controller;
int line;
int configmode;

controller = -1;
line = -1;
configmode = (1<<0);
ret = TrigAssertConfig (controller, line, configmode);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-15 LabWindows VXI Library Reference Manual

TrigCntrConfig

Syntax:

BASIC Syntax ret% = TrigCntrConfig% (controller%, configmode%,
 source%, count%)

C Syntax ret = TrigCntrConfig (controller, configmode,
 source, count)

Action: Configures TIC chip internal 16-bit counter. Call SrcTrig or EnableTrigSense to actually start
the counter. The input can be any trigger line, CLK10, or the EXTCLK connection. The counter has
two outputs: TCNTR (one 100-nsec pulse per input edge) and GCNTR (unasserted until count goes
from 1 to 0, then asserted until counter reloaded or reset). You can use MapTrigToTrig to map
TCNTR to any number of the TTL or ECL trigger lines, and to map GCNTR to any number of the
external (GPIO) lines.

Remarks:
Input parameters:

controller integer Controller on which to configure the TIC counter
configmode integer Configuration mode

 Value Configuration Mode
0 Initialize the counter
2 Reload the counter leaving enabled
3 Disable/abort any count in progress

source integer Trigger line to configure as input to counter
 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13ECL trigger lines 0 to 5

70 CLK10
71 EXTCLK connection

count integer Number of input pulses to count before terminating

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid source line

-10 = Invalid configmode
-12 = Counter not initialized
-15 = Previous count incomplete

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-16 © National Instruments Corporation

BASIC Example:
' Configure counter to count 25 assertions on TTL trigger line 5.
' (Prot parameter in EnableTrigSense determines whether counter
' accepts SYNC or SEMI-SYNC assertions.)

controller% = -1
configmode% = 0 ' initialize the counter.
source% = 5
count% = 25
ret% = TrigCntrConfig% (controller%, configmode%, source%, count%)

C Example:
/* Configure counter to count 25 assertions on TTL trigger line 5.
 (Prot parameter in EnableTrigSense determines whether counter
 accepts SYNC or SEMI-SYNC assertions.) */

int controller;
int configmode;
int source;
int count;
int ret;

controller = -1;
configmode = 0; /* initialize the counter. */
source = 5;
count = 25;
ret = TrigCntrConfig (controller, configmode, source, count);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-17 LabWindows VXI Library Reference Manual

TrigExtConfig

Syntax:

BASIC Syntax ret% = TrigExtConfig% (controller%, extline%,
 configmode%)

C Syntax ret = TrigExtConfig (controller, extline,
 configmode)

Action: Configures the external trigger (GPIO) lines. The external trigger lines can be fed back for use in the
crosspoint switch output. The external trigger lines can be asserted high or low, or left unconfigured
(tri-stated) for use as a crosspoint switch input. If not fed back, the external input can be inverted
before mapped to a trigger line.

Remarks:
Input parameters:

controller integer Controller on which to configure external connection
extline integer Trigger line to configure

 Value Trigger Line
40 to 49External source/destination (GPIO 0 to 9)

40 Front panel In (connector 1)
41 Front panel Out (connector 2)
42 ECL bypass from front panel
43 EXTCLK

44 to 49Hardware-dependent GPIOs 4 to 9
configmode integer Configuration mode

 Bit Configuration Modes
0 1 = Feed back any line mapped as input

into the crosspoint switch
0 = Drive input to external (GPIO) pin

1 1 = Assert input (regardless of feedback)
0 = Leave input unconfigured

2 1 = If assertion selected, assert low
0 = If assertion selected, assert high

3 1 = Invert external input (not feedback)
0 = Pass external input unchanged

All other values are reserved for future expansion.

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid extline

-10 = Invalid configmode

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-18 © National Instruments Corporation

BASIC Example:
' Configure external line 40 (front panel In) to not be fed back,
' and left tri-stated for use as a mapped input via MapTrigToTrig.
' Invert the front panel In signal.

controller% = -1
extline% = 40
configmode% = 8
ret% = TrigExtConfig% (controller%, extline%, configmode%)

C Example:
/* Configure external line 40 (front panel In) to not be fed back,
 and left tri-stated for use as a mapped input via MapTrigToTrig.
 Invert the front panel In signal. */

int controller;
int extline;
int configmode;
int ret;

controller = -1;
extline = 40;
configmode = (1<<3); /* turn on bit 3 */
ret = TrigExtConfig (controller, extline, configmode);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-19 LabWindows VXI Library Reference Manual

TrigTickConfig

Syntax:

BASIC Syntax ret% = TrigTickConfig% (controller%, configmode%,
 source%, tcount1%, tcount2%)

C Syntax ret = TrigTickConfig (controller, configmode,
 source, tcount1, tcount2)

Action: Configures TIC chip internal dual 5-bit tick timers. Call SrcTrig or EnableTrigSense to
actually start the tick timers. SrcTrig inhibits the TICK1 output from generating tick timer
interrupts. EnableTrigSense enables the TICK1 output to generate tick timer interrupts. The
input can be any external (GPIO) line, CLK10, or the EXTCLK connection. You can map the two tick
timer outputs TICK1 and TICK2 to any number of TTL/ECL trigger lines. In addition, you can map
the TICK2 output to any number of external (GPIO) lines.

Remarks:
Input parameters:

controller integer Controller on which to configure the TIC chip dual 5-bit
tick timers

configmode integer Configuration mode
 Value Configuration Mode

0 Initialize the tick timers (rollover mode)
1 Initialize the tick timers (non-rollover mode)
2 Reload the tick timers, leaving enabled
3 Disable/abort any count in progress

source integer Trigger line to configure as input to counter
 Value Trigger Line

40 to 49 External source/destination (GPIO 0 to 9)
70 CLK10
71 EXTCLK connection

tcount1 integer Number of input pulses (as a power of two) to count
before asserting TICK1 output (and terminating the
tick timer if configured for non-rollover mode)

tcount2 integer Number of input pulses (as a power of two) to count
before asserting TICK2 output

Output parameters:
none

Return value:
ret integer Return Status

3 = Successful disable of the tick timers
2 = Successful reload of the tick timers
1 = Successful initialization of non-rollover mode
0 = Successful initialization of rollover mode

-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid source line

-10 = Invalid configmode
-15 = Previous tick configured and enabled

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-20 © National Instruments Corporation

BASIC Example:
' Configure the tick timers to interrupt every 6.55 milliseconds by
' dividing down CLK10 as an input. Call EnableTrigSense to start the
' tick timers and enable interrupts.

controller% = -1
configmode% = 0 ' Initialize with rollover
source% = 70 ' CLK10
tcount1% = 16 ' Divide down by 65536 (2^16)
tcount2% = 0 ' Does not matter
ret% = TrigTickConfig% (controller%, configmode%, source%, tcount1&,

tcount2&)

C Example:
/* Configure the tick timers to interrupt every 6.55 milliseconds by

dividing down CLK10 as an input. Call EnableTrigSense to start the tick
timers and enable interrupts. */

int ret;
int controller;
int configmode;
int source;
int tcount1, tcount2;

controller = -1;
configmode = 0;/* Initialize with rollover */
source = 70; /* CLK10 */
tcount1 = 16; /* Divide down by 65536 (2^16) */
tcount2 = 0; /* Does not matter */
ret = TrigTickConfig (controller, configmode, source, tcount1, tcount2);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-21 LabWindows VXI Library Reference Manual

UnMapTrigToTrig

Syntax:

BASIC Syntax ret% = UnMapTrigToTrig% (controller%, srcTrig%,
 destTrig%)

C Syntax ret = UnMapTrigToTrig (controller, srcTrig,
 destTrig)

Action: Unmaps the specified TTL, ECL, Star X, Star Y, external connection (GPIO), or miscellaneous external
signal line that was mapped to another line using the MapTrigToTrig function.

Remarks:
Input parameters:

controller integer Controller on which to unmap signal lines
srcTrig integer Source line to unmap from destination
destTrig integer Destination line mapped from source

 Value Source or Destination
0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

14 to 26 Star X lines 0 to 12 *
27 to 39 Star Y lines 0 to 12 *
40 to 49 External source/destination (GPIO 0 to 9)

40 Front panel In (connector 1)
41 Front panel Out (connector 2)
42 ECL bypass from front panel
43 Connection to EXTCLK input pin

44 to 49 Hardware-dependent GPIOs 4 to 9
50 TIC counter pulse output (TCNTR)
51 TIC counter finished output (GCNTR)
60 TIC TICK1 tick timer output
61 TIC TICK2 tick timer output

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupported function, no mapping capability
-2 = Invalid controller

-12 = Not previously mapped

* Star X and Star Y are not currently supported lines.

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-22 © National Instruments Corporation

BASIC Example:
' Unmap route of TTL line 4 on the local CPU (or first extended
' controller) to go out of the front panel as mapped by MapTrigToTrig.

controller% = -1 ' Local CPU
srcTrig% = 4' TTL line 4
destTrig% = 49 ' Front panel out connector
ret% = UnMapTrigToTrig% (controller%, srcTrig%, destTrig%)

C Example:
/* Unmap route of TTL line 4 on the local CPU (or first extended

controller) to go out of the front panel as mapped by
MapTrigToTrig(). */

int controller;
int srcTrig;
int destTrig;
int ret;

controller = -1; /* Local CPU */
src = 4; /* TTL line 4 */
dest = 49; /* Front panel out connector */
ret = UnMapTrigToTrig (controller, srcTrig, destTrig);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-23 LabWindows VXI Library Reference Manual

WaitForTrig

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using WaitForTTLtrig or WaitForECLtrig with the same parameters as described below.

Syntax:

BASIC Syntax ret% = WaitForTrig% (controller%, line%,
 timeout&)

C Syntax ret = WaitForTrig (controller, line, timeout)

Action: Waits for the specified trigger line to be sensed on the specified controller for the specified time.
EnableTrigSense must be called to sensitize the hardware to the particular trigger protocol to be
sensed.

Remarks:
Input parameters:

controller integer Controller on which to wait for trigger
line integer Trigger line to wait on

 Value Trigger Line
0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC TICK1 tick timer

timeout long Timeout value in milliseconds

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported
-6 = Timeout occurred

-12 = line not configured for sensing

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-24 © National Instruments Corporation

BASIC Example:
' Wait for ECL line 1 on the local CPU (or the first extended controller)
' to be encountered.

controller% = -1
line% = 9
timeout& = 10000&
ret% = WaitForTrig% (controller%, line%, timeout&)

C Example:
/* Wait for ECL line 1 on the local CPU (or the first extended controller)

to be encountered. */

int ret;
int controller;
int line;
long timeout;

controller = -1;
line = 9; /* ECL line + 8 */
timeout = 10000L;
ret = WaitForTrig (controller, line, timeout);

Chapter 10 VXI Trigger Functions

© National Instruments Corporation 10-25 LabWindows VXI Library Reference Manual

Default Handlers for VXI Trigger Functions
The NI-VXI software provides the following default handlers for the VXI trigger functions. These are sample
handlers that InitVXIlibrary installs when it initializes the software at the beginning of the application
program. Default handlers give you the minimal and most common functionality required for a VXI system. They
are given in source code form on your NI-VXI distribution media to be used as examples/prototypes for extending
their functionality to a particular application.

DefaultTrigHandler

This function call may not exist on some platforms that do not have the TIC chip. If this is the case, you can achieve
the same functionality by using DefaultTTLtrigHandler or DefaultECLtrigHandler with the same parameters as
described below.

Syntax:

BASIC Syntax none

C Syntax DefaultTrigHandler (controller, line, type)

Action: Handles the VXI triggers on specified trigger lines. Calls the AcknowledgeTrig function to
acknowledge the trigger interrupt if the type parameter specifies trigger sensed. Otherwise, the
interrupt is ignored.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

controller integer Controller from which the trigger interrupt is received
line integer Trigger line interrupt received on

 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13ECL trigger lines 0 to 5

50 TIC counter
60 TIC TICK1 tick timer

type integer Conditioning effect
 Bit Conditioning Effect
0 1 = Trigger sensed

0 = Sourced trigger acknowledged
2 1 = Assertion edge overrun occurred
3 1 = Unassertion edge overrun occurred
4 1 = Pulse stretch overrun occurred

15 1 = Error summary (2, 3, 4 = 1)

Output parameters:
none

Return value:
none

VXI Trigger Functions Chapter 10

LabWindows VXI Library Reference Manual 10-26 © National Instruments Corporation

DefaultTrigHandler2

Syntax:

BASIC Syntax none

C Syntax DefaultTrigHandler2 (controller, line, type)

Action: Handles the VXI triggers on specified trigger lines. This trigger interrupt handler performs no
operations. Any triggers that require acknowledgments must be acknowledged at the application level.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameters:

controller integer Controller from which the trigger interrupt is received
line integer Trigger line interrupt received on

 Value Trigger Line
0 to 7TTL trigger lines 0 to 7
8 to 13ECL trigger lines 0 to 5

50 TIC counter
60 TIC TICK1 tick timer

type integer Conditioning effect
 Bit Conditioning Effect
0 1 = Trigger sensed

0 = Sourced trigger acknowledged
2 1 = Assertion edge overrun occurred
3 1 = Unassertion edge overrun occurred
4 1 = Pulse stretch overrun occurred

15 1 = Error summary (2, 3, 4 = 1)

Output parameters:
none

Return value:
none

© National Instruments Corporation 11-1 LabWindows VXI Library Reference Manual

Chapter 11
System Interrupt Handler Functions

This chapter describes the LabWindows VXI System Interrupt Handler Library. With these functions, you can
handle miscellaneous system conditions that can occur in the VXI environment, such as Sysfail, ACfail, Bus Error,
Soft Reset, and/or Sysreset interrupts. The NI-VXI software interface can handle all of these system conditions for
the application through the use of default interrupt service routines. The NI-VXI software handles all system
interrupt handlers in the same manner. Each type of interrupt has its own specified default handler, which is
installed when the InitVXIlibrary function is called. All system interrupt handlers are initially disabled
(except for Bus Error). The corresponding enable function for each handler must be called in order to invoke the
default handler.

The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The following 19
functions are described in this chapter:

• AssertSysreset

• DisableACfail

• DisableSoftReset

• DisableSysfail

• DisableSysreset

• EnableACfail

• EnableSoftReset

• EnableSysfail

• EnableSysreset

• GetACfailHandler

• GetBusErrorHandler

• GetSoftResetHandler

• GetSysfailHandler

• GetSysresetHandler

• SetACfailHandler

• SetBusErrorHandler

• SetSoftResetHandler

• SetSysfailHandler

• SetSysresetHandler

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-2 © National Instruments Corporation

AssertSysreset

Syntax:

BASIC Syntax ret% = AssertSysreset% (controller%, resetmode%)

C Syntax ret = AssertSysreset (controller, resetmode)

Action: Asserts the SYSRESET* signal in the mainframe specified by controller.

Remarks:
Input parameter:

controller integer Logical address of mainframe extender on which to
assert SYSRESET*

-1 = From the local CPU or first extended controller
-2 = All controllers

resetmode integer Mode of execution
0 = Do not disturb original configuration
1 = Force link between SYSRESET* and local reset

(SYSRESET* resets local CPU)
2 = Break link between SYSRESET* and local reset

(SYSRESET* does not reset local CPU)

Output parameters:
none

Return value:
ret integer Return Status

0 = SYSRESET* signal successfully asserted
-1 = No hardware support for this function
-2 = Invalid controller

BASIC Example:
' Assert SYSRESET* on the first extended controller (or local CPU)
' without changing the current configuration.

controller% = -1
resetmode% = 0
ret% = AssertSysreset% (controller%, resetmode%)

C Example:
/* Assert SYSRESET* on the first extended controller (or local CPU)

without changing the current configuration. */

int controller;
int resetmode;
int ret;

controller = -1;
resetmode = 0;
ret = AssertSysreset (controller, resetmode);

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-3 LabWindows VXI Library Reference Manual

DisableACfail

Syntax:

BASIC Syntax ret% = DisableACfail% (controller%)

C Syntax ret = DisableACfail (controller)

Action: Desensitizes the local CPU from interrupts generated from ACfail conditions on the embedded CPU
VXIbus backplane or from the specified extended controller VXI backplane (if external CPU).

Remarks:
Input parameter:

controller integer Logical address of mainframe extender to disable

Output parameters:
none

Return value:
ret integer Return Status

0 = ACfail interrupt successfully disabled
-1 = No hardware support for this function
-2 = Invalid controller

BASIC Example:
' Disable the ACfail interrupt on the first frame (or local CPU).

controller% = -1
ret% = DisableACfail% (controller%)

C Example:
/* Disable the ACfail interrupt on the first frame (or local CPU). */

int controller;
int ret;

controller = -1;
ret = DisableACfail (controller);

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-4 © National Instruments Corporation

DisableSoftReset

Syntax:

BASIC Syntax ret% = DisableSoftReset% ()

C Syntax ret = DisableSoftReset ()

Action: Disables the local Soft Reset interrupt being generated from a write to the Reset bit of the local CPU
Control register.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Soft Reset interrupt successfully disabled
-1 = No hardware support for this function

BASIC Example:
' Disable the Soft Reset interrupt.

ret% = DisableSoftReset% ()

C Example:
/* Disable the Soft Reset interrupt. */

int ret;

ret = DisableSoftReset ();

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-5 LabWindows VXI Library Reference Manual

DisableSysfail

Syntax:

BASIC Syntax ret% = DisableSysfail% (controller%)

C Syntax ret = DisableSysfail (controller)

Action: Desensitizes the local CPU from interrupts generated from Sysfail conditions on the embedded CPU
VXIbus backplane or from the specified extended controller VXI backplane (if external CPU).

Remarks:
Input parameter:

controller integer Logical address of mainframe extender to disable

Output parameters:
none

Return value:
ret integer Return Status

0 = Sysfail interrupt successfully disabled
-1 = No hardware support for this function
-2 = Invalid controller

BASIC Example:
' Disable the Sysfail interrupt.

controller% = -1
ret% = DisableSysfail% (controller%)

C Example:
/* Disable the Sysfail interrupt. */

int controller;
int ret;

controller = -1;
ret = DisableSysfail (controller);

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-6 © National Instruments Corporation

DisableSysreset

Syntax:

BASIC Syntax ret% = DisableSysreset% (controller%)

C Syntax ret = DisableSysreset (controller)

Action: Desensitizes the local CPU from Sysreset interrupts from the embedded CPU VXIbus backplane or from
the specified extended controller VXI backplane (if external CPU).

Remarks:
Input parameter:

controller integer Logical address of mainframe extender to disable

Output parameters:
none

Return value:
ret integer Return Status

0 = Sysreset interrupt successfully disabled
-1 = No hardware support for this function
-2 = Invalid controller

BASIC Example:
' Disable the Sysreset interrupt.

controller% = -1
ret% = DisableSysreset% (controller%)

C Example:
/* Disable the Sysreset interrupt. */

int controller;
int ret;

controller = -1;
ret = DisableSysreset (controller);

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-7 LabWindows VXI Library Reference Manual

EnableACfail

Syntax:

BASIC Syntax ret% = EnableACfail% (controller%)

C Syntax ret = EnableACfail (controller)

Action: Sensitizes the local CPU to interrupts generated from ACfail conditions on the embedded CPU VXIbus
backplane or from the specified extended controller VXI backplane (if external CPU).

Remarks:
Input parameter:

controller integer Logical address of mainframe extender to enable

Output parameters:
none

Return value:
ret integer Return Status

0 = ACfail interrupt successfully enabled
-1 = No hardware support for this function
-2 = Invalid controller

BASIC Example:
' Enable the ACfail interrupt on the first frame (or local CPU).

controller% = -1
ret% = EnableACfail% (controller%)

C Example:
/* Enable the ACfail interrupt on the first frame (or local CPU). */

int controller;
int ret;

controller = -1;
ret = EnableACfail (controller);

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-8 © National Instruments Corporation

EnableSoftReset

Syntax:

BASIC Syntax ret% = EnableSoftReset% ()

C Syntax ret = EnableSoftReset ()

Action: Enables the local Soft Reset interrupt being generated from a write to the Reset bit of the local CPU
Control register.

Remarks:
Parameters:

none

Return value:
ret integer Return Status

0 = Soft Reset interrupt successfully enabled
-1 = No hardware support for this function

BASIC Example:
' Enable the Soft Reset interrupt.

ret% = EnableSoftReset% ()

C Example:
/* Enable the Soft Reset interrupt. */

int ret;

ret = EnableSoftReset ();

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-9 LabWindows VXI Library Reference Manual

EnableSysfail

Syntax:

BASIC Syntax ret% = EnableSysfail% (controller%)

C Syntax ret = EnableSysfail (controller)

Action: Sensitizes the local CPU to interrupts generated from Sysfail conditions on the embedded CPU VXIbus
backplane or from the specified extended controller VXI backplane (if external CPU).

Remarks:
Input parameter:

controller integer Logical address of mainframe extender to enable

Output parameters:
none

Return value:
ret integer Return Status

0 = Sysfail interrupt successfully enabled
-1 = No hardware support for this function
-2 = Invalid controller

BASIC Example:
' Enable the Sysfail interrupt in the local CPU (or first frame).

controller% = -1
ret% = EnableSysfail% (controller%)

C Example:
/* Enable the Sysfail interrupt in the local CPU (or first frame). */

int controller;
int ret;

controller = -1;
ret = EnableSysfail (controller);

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-10 © National Instruments Corporation

EnableSysreset

Syntax:

BASIC Syntax ret% = EnableSysreset% (controller%)

C Syntax ret = EnableSysreset (controller)

Action: Sensitizes the local CPU to Sysreset interrupts from the embedded CPU VXIbus backplane or from the
specified extended controller VXI backplane (if external CPU).

Remarks:
Input parameter:

controller integer Logical address of mainframe extender to enable

Output parameters:
none

Return value:
ret integer Return Status

0 = Sysreset interrupt successfully enabled
-1 = No hardware support for this function
-2 = Invalid controller

BASIC Example:
' Enable the Sysreset interrupt in the local CPU (or first frame).

controller% = -1
ret% = EnableSysreset% (controller%)

C Example:
/* Enable the Sysreset interrupt in the local CPU (or first frame). */

int controller;
int ret;

controller = -1;
ret = EnableSysreset (controller);

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-11 LabWindows VXI Library Reference Manual

GetACfailHandler

Syntax:

BASIC Syntax none

C Syntax func = GetACfailHandler ()

Action: Returns the address of the current ACfail interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func void (*)() Pointer to the current ACfail interrupt handler

NULL = No hardware support for this function

BASIC Example:
none

C Example:
/* Get the address of the ACfail handler. */

void (*func)();

func = GetACfailHandler();

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-12 © National Instruments Corporation

GetBusErrorHandler

Syntax:

BASIC Syntax none

C Syntax func = GetBusErrorHandler()

Action: Returns the address of the current user Bus Error interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func void (*)() Pointer to the current Bus Error interrupt handler

BASIC Example:
none

C Example:
/* Get the address of the Bus Error handler. */

void (*func)();

func = GetBusErrorHandler ();

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-13 LabWindows VXI Library Reference Manual

GetSoftResetHandler

Syntax:

BASIC Syntax none

C Syntax func = GetSoftResetHandler ()

Action: Returns the address of the current Soft Reset interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func void (*)() Pointer to the current Soft Reset interrupt handler

NULL = No hardware support for this function

BASIC Example:
none

C Example:
/* Get the address of the Soft Reset handler. */

void (*func)();

func = GetSoftResetHandler();

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-14 © National Instruments Corporation

GetSysfailHandler

Syntax:

BASIC Syntax none

C Syntax func = GetSysfailHandler ()

Action: Returns the address of the current Sysfail interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func void (*)() Pointer to the current Sysfail interrupt handler

NULL = No hardware support for this function

BASIC Example:
none

C Example:
/* Get the address of the Sysfail handler. */

void (*func)();

func = GetSysfailHandler ();

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-15 LabWindows VXI Library Reference Manual

GetSysresetHandler

Syntax:

BASIC Syntax none

C Syntax func = GetSysresetHandler ()

Action: Returns the address of the current Sysreset interrupt handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
func void (*)() Pointer to the current Sysreset interrupt handler

NULL = No hardware support for this function

BASIC Example:
none

C Example:
/* Get the address of the Sysreset handler. */

void (*func)();

func = GetSysresetHandler ();

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-16 © National Instruments Corporation

SetACfailHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetACfailHandler (func)

Action: Replaces the current ACfail interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func void (*)() Pointer to the new ACfail interrupt handler
NULL = DefaultACfailHandler

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = No hardware support for this function

BASIC Example:
none

C Example:
/* Set the ACfail handler. */

void func (int);
int ret;

ret = SetACfailHandler (func);

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-17 LabWindows VXI Library Reference Manual

SetBusErrorHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetBusErrorHandler(func)

Action: Replaces the current Bus Error handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func void (*)() Pointer to the new Bus Error interrupt handler
NULL = DefaultBusErrorHandler

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful

BASIC Example:
none

C Example:
/* Set the Bus Error handler. */

void func ();
int ret;

ret = SetBusErrorHandler(func);

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-18 © National Instruments Corporation

SetSoftResetHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetSoftResetHandler (func)

Action: Replaces the current Soft Reset interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func void (*)() Pointer to the new Soft Reset interrupt handler
NULL = DefaultSoftResetHandler

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = No hardware support for this function

BASIC Example:
none

C Example:
/* Set the Soft Reset handler. */

void func ();
int ret;

ret = SetSoftResetHandler (func);

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-19 LabWindows VXI Library Reference Manual

SetSysfailHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetSysfailHandler (func)

Action: Replaces the current Sysfail interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func void (*)() Pointer to the new Sysfail interrupt handler
NULL = DefaultSysfailHandler

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = No hardware support for this function

BASIC Example:
none

C Example:
/* Set the Sysfail handler. */

void func (int);
int ret;

ret = SetSysfailHandler (func);

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-20 © National Instruments Corporation

SetSysresetHandler

Syntax:

BASIC Syntax none

C Syntax ret = SetSysresetHandler (func)

Action: Replaces the current SYSRESET* interrupt handler with a specified handler.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

func void (*)() Pointer to the new SYSRESET* interrupt handler
NULL = DefaultSysresetHandler

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = No hardware support for this function

BASIC Example:
none

C Example:
/* Set the Sysreset handler. */

void func (int);
int ret;

ret = SetSysresetHandler (func);

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-21 LabWindows VXI Library Reference Manual

Default Handlers for the System Interrupt Handler
Functions
The NI-VXI software provides the following default handlers for the system interrupt handler functions. These are
sample handlers that InitVXIlibrary installs when it initializes the software at the beginning of the application
program. Default handlers give you the minimal and most common functionality required for a VXI system. They
are given in source code form on your NI-VXI distribution media to be used as examples/prototypes for extending
their functionality to a particular application.

DefaultACfailHandler

Syntax:

BASIC Syntax none

C Syntax DefaultACfailHandler (controller)

Action: This default handler simply increments the global variable ACfailRecv.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

controller integer Logical address of controller interrupting

Output parameters:
none

Return value:
none

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-22 © National Instruments Corporation

DefaultBusErrorHandler

Syntax:

BASIC Syntax none

C Syntax DefaultBusErrorHandler ()

Action: This default handler simply increments the global variable BusErrorRecv.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
none

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-23 LabWindows VXI Library Reference Manual

DefaultSoftResetHandler

Syntax:

BASIC Syntax none

C Syntax DefaultSoftResetHandler ()

Action: This default handler simply increments the global variable SoftResetRecv.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Parameters:

none

Return value:
none

System Interrupt Handler Functions Chapter 11

LabWindows VXI Library Reference Manual 11-24 © National Instruments Corporation

DefaultSysfailHandler
Syntax:

BASIC Syntax none

C Syntax DefaultSysfailHandler (controller)

Action: Handles the interrupt generated when the SYSFAIL* signal on the VXI backplane is asserted. If a
Servant is detected to have failed (as indicated when its PASS bit is cleared), the default Sysfail handler
sets that Servant's Sysfail Inhibit bit and optionally sets its Reset bit. In addition, the global variable
SysfailRecv is incremented.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

controller integer Logical address of controller interrupting

Output parameters:
none

Return value:
none

Chapter 11 System Interrupt Handler Functions

© National Instruments Corporation 11-25 LabWindows VXI Library Reference Manual

DefaultSysresetHandler

Syntax:

BASIC Syntax none

C Syntax DefaultSysresetHandler (controller)

Action: Handles the interrupt generated when the SYSRESET* signal on the VXI backplane is asserted (and the
local CPU is not configured to be reset itself). This default handler simply increments the global variable
SysresetRecv.

Note: You can only use this function in standalone C programs or loadable object modules.

Remarks:
Input parameter:

controller integer Logical address of controller interrupting

Output parameters:
none

Return value:
none

© National Instruments Corporation 12-1 LabWindows VXI Library Reference Manual

Chapter 12
VXIbus Extender Functions

This chapter describes the LabWindows VXIbus Extender Library. The NI-VXI software interface fully supports
the standard VXIbus extension method presented in the VXIbus Mainframe Extender Specification. When the
National Instruments Resource Manager (RM) completes its configuration, all default transparent extensions are
complete. The transparent extensions include extensions of VXI interrupt, TTL trigger, ECL trigger, Sysfail,
ACfail, and Sysreset VXIbus signals. The VXIbus extender functions are used to dynamically change the default
RM settings if the application has such a requirement. Usually, the application never needs to change the default
settings. Consult your utilities manual on how to use vxiedit or vxitedit to change the default extender
settings.

The functions are explained in both BASIC and C syntax, and are arranged alphabetically. The following four
functions are described in this chapter:

• MapECLtrig

• MapTTLtrig

• MapUtilBus

• MapVXIint

VXIbus Extender Functions Chapter 12

LabWindows VXI Library Reference Manual 12-2 © National Instruments Corporation

MapECLtrig

Syntax:

BASIC Syntax ret% = MapECLtrig% (extender%, lines%,
 directions%)

C Syntax ret = MapECLtrig (extender, lines, directions)

Action: Maps the specified ECL trigger lines for the specified mainframe in the specified direction (into or out of
the mainframe).

Remarks:
Input parameters:

extender integer Mainframe extender for which to map ECL lines
lines integer Bit vector of ECL trigger lines. Bits 5 to 0 correspond

to ECL lines 5 to 0, respectively.
1 = Enable for appropriate line
0 = Disable for appropriate line

directions integer Bit vector of directions for ECL lines. Bits 5 to 0
correspond to ECL lines 5 to 0, respectively.

1 = Into the mainframe
0 = Out of the mainframe

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

BASIC Example:
' Map ECL lines 0 and 1 on the mainframe extender at Logical Address 5
' to go into the mainframe.

extender% = 5
lines% = &H003 ' ECL lines 0 and 1.
directions% = &H0003
ret% = MapECLtrig% (extender%, lines%, directions%)

C Example:
/* Map ECL lines 0 and 1 on the mainframe extender at Logical Address 5

to go into the mainframe. */

int extender;
int lines;
int directions;
int ret;

extender = 5;
lines = (int)((1<<0) | (1<<1)); /* ECL lines 0 and 1. */
directions = (int)((1<<0) | (1<<1));
ret = MapECLtrig (extender, lines, directions);

Chapter 12 VXIbus Extender Functions

© National Instruments Corporation 12-3 LabWindows VXI Library Reference Manual

MapTTLtrig

Syntax:

BASIC Syntax ret% = MapTTLtrig% (extender%, lines%,
 directions%)

C Syntax ret = MapTTLtrig (extender, lines, directions)

Action: Maps the specified TTL trigger lines for the specified mainframe in the specified direction (into or out of
the mainframe).

Remarks:
Input parameters:

extender integer Mainframe extender for which to map TTL lines
lines integer Bit vector of TTL trigger lines. Bits 7 to 0 correspond

to TTL lines 7 to 0, respectively.
1 = Enable for appropriate line
0 = Disable for appropriate line

directions integer Bit vector of directions for TTL lines. Bits 7 to 0
correspond to TTL lines 7 to 0, respectively.

1 = Into the mainframe
0 = Out of the mainframe

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

BASIC Example:
' Map TTL lines 4 and 5 on the mainframe extender at Logical Address 5
' to go out of the mainframe.

extender% = 5
lines% = &H0030 ' TTL lines 4, 5.
directions% = &H0
ret% = MapTTLtrig% (extender%, lines%, directions%)

C Example:
/* Map TTL lines 4 and 5 on the mainframe extender at Logical Address 5

to go out of the mainframe. */

int extender;
int lines;
int directions;
int ret;

extender = 5;
lines = (int)((1<<4) | (1<<5)); /* TTL lines 4, 5. */
directions = (int)0x0000;
ret = MapTTLtrig (extender, lines, directions);

VXIbus Extender Functions Chapter 12

LabWindows VXI Library Reference Manual 12-4 © National Instruments Corporation

MapUtilBus

Syntax:

BASIC Syntax ret% = MapUtilBus% (extender%, modes%)

C Syntax ret = MapUtilBus (extender, modes)

Action: Maps the specified VXI utility bus signal for the specified mainframe into and/or out of the mainframe.
The utility bus signals include Sysfail, ACfail, and Sysreset.

Remarks:
Input parameters:

extender integer Mainframe extender for which to map utility bus signals
modes integer Bit vector of utility bus signals corresponding to the

utility bus signals.
1 = Enable for corresponding signal and direction
0 = Disable for corresponding signal and direction

 Bit Utility Bus Signal and Direction
5 ACfail into the mainframe
4 ACfail out of the mainframe
3 Sysfail into the mainframe
2 Sysfail out of the mainframe
1 Sysreset into the mainframe
0 Sysreset out of the mainframe

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

BASIC Example:
' Map Sysfail into Mainframe 5. Map Sysreset into and out of Mainframe 5.
' Do not map ACfail at all.

extender% = 5
modes% = &H000B
ret% = MapUtilBus% (extender%, modes%)

C Example:
/* Map Sysfail into Mainframe 5. Map Sysreset into and out of Mainframe

5. Do not map ACfail at all. */

int extender;
int modes;
int ret;

extender = 5;
modes = (int)((1<<3) | (1<<1) | (1<<0));
ret = MapUtilBus (extender, modes);

Chapter 12 VXIbus Extender Functions

© National Instruments Corporation 12-5 LabWindows VXI Library Reference Manual

MapVXIint

Syntax:

BASIC Syntax ret% = MapVXIint% (extender%, levels%,
 directions%)

C Syntax ret = MapVXIint (extender, levels, directions)

Action: Maps the specified VXI interrupt levels for the specified mainframe in the specified direction (into or out
of the mainframe).

Remarks:
Input parameters:

extender integer Mainframe extender for which to map VXI interrupt
levels

levels integer Bit vector of VXI interrupt levels. Bits 6 to 0 correspond
to VXI interrupt levels 7 to 1, respectively.

1 = Enable for appropriate level
0 = Disable for appropriate level

directions integer Bit vector of directions for VXI interrupt levels. Bits 6 to
0 correspond to VXI interrupt levels 7 to 1, respectively.

1 = Into the mainframe
0 = Out of the mainframe

Output parameters:
none

Return value:
ret integer Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

BASIC Example:
' Map VXI interrupt levels 4 and 7 on the mainframe extender at Logical
' Address 5 to go out of the mainframe. Map VXI interrupt level 1 to go
' into the mainframe.

extender% = 5
levels% = &H0049 ' Levels 1, 4, 7.
directions% = &H0001 ' Level 1 only one in.
ret% = MapVXIint% (extender%, levels%, directions%)

VXIbus Extender Functions Chapter 12

LabWindows VXI Library Reference Manual 12-6 © National Instruments Corporation

C Example:
/* Map VXI interrupt levels 4 and 7 on the mainframe extender at Logical

Address 5 to go out of the mainframe. Map VXI interrupt level 1 to go
into the mainframe. */

int extender;
int levels;
int directions;
int ret;

extender = 5;
levels = (int)((1<<0) | (1<<3) | (1<<6)); /* Levels 1, 4, 7. */
directions = (int)(1<<0); /* Level 1 only one in. */
ret = MapVXIint (extender, levels, directions);

© National Instruments Corporation Appendix-1 LabWindows VXI Library Reference Manual

Appendix
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary to help us solve
technical problems you might have as well as a form you can use to comment on the product documentation. Filling
out a copy of the Technical Support Form before contacting National Instruments helps us help you better and
faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S. and Canada,
applications engineers are available Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other
countries, contact the nearest branch office. You may fax questions to us at any time.

Corporate Headquarters
(512) 795-8248
Technical Support fax: (800) 328-2203
 (512) 794-5678

Branch Offices Phone Number Fax Number
Australia (03) 879 9422 (03) 879 9179
Austria (0662) 435986 (0662) 437010-19
Belgium 02/757.00.20 02/757.03.11
Denmark 45 76 26 00 45 76 71 11
Finland (90) 527 2321 (90) 502 2930
France (1) 48 14 24 24 (1) 48 14 24 14
Germany 089/7 41 31 30 089/7 14 60 35
Hong Kong (02) 26375019 (02) 226868505
Italy 02/48301892 02/48301915
Japan (03) 3788-1921 (03) 3788-1923
Korea (02) 596-7456 (02) 596-7455
Mexico 05/2022544 05/2022544
Netherlands 03480-33466 03480-30673
Norway 32-848400 32-848600
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 27 00 20 056 27 00 25
U.K. 0635 523545 0635 523154

or 0800 289877 (in U.K. only)

LabWindows® Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware. Use your completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

Be sure to fax copies of your AUTOEXEC.BAT and CONFIG.SYS files as well. If one or more National
Instruments hardware products are involved in this problem, include the Hardware Configuration form from each
hardware product's user manual. Include additional pages as necessary.

Name

Company

Address

Fax () Phone ()

Computer brand Model Processor Coprocessor

Operating system Version Bus (XT/AT/ISA, Micro Channel, or EISA)

Speed (MHz) CPU BUS RAM (Extended) (Expanded)

Video Board Mouse (Yes/No) Mouse Type Mouse Driver Version

Other adapters installed

Base I/O Address Level of Other Boards Interrupt Level of Other Boards

Hard disk capacity Brand

Instruments used

National Instruments hardware product models Version

Configuration

Base I/O Address of Board(s) Interrupt Level of Board(s)

LabWindows Version Number Size and date of LW.EXE file

LabWindows Run-Time System Version Number Size and date of LWRTS.EXE file

Other National Instruments software product Version

Programming Language and Version

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows® VXI Library Reference Manual

Edition Date: March 1995

Part Number: 320318-01

Please comment on the completeness, clarity, and organization of this manual.

If you find errors in this manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications Fax to: (512) 794-5678
National Instruments Corporation Technical Publications
6504 Bridge Point Parkway, MS 53-02 National Instruments Corporation
Austin, TX 78730-5039 MS 53-02

© National Instruments Corporation Glossary-1 LabWindows VXI Library Reference Manual

Glossary
__

Prefix Meaning Value

n- nano- 10-9

m- milli- 10-3

k- kilo- 103

A

A16 space One of the VXIbus address spaces. Equivalent to the VME 64K short address space. In
VXI, the upper 16K of A16 space is allocated for use by VXI devices configuration
registers. This 16K region is referred to as VXI Configuration space.

A24 space One of the VXIbus address spaces. Equivalent to the VME 16M standard address space.

A32 space One of the VXIbus address spaces. Equivalent to the VME 4 Gigabyte extended address
space.

ACFAIL* A VMEbus backplane signal that is asserted when a power failure has occurred (either
AC line source or power supply malfunction), or if it is necessary to disable the power
supply (such as for a high temperature condition).

address Character code that identifies a specific location (or series of locations) in memory.

address modifier One of six signals in the VMEbus specification used by VMEbus masters to indicate the
address space and mode (supervisory/nonprivileged, data/program/block) in which a data
transfer is to take place.

address space A set of 2n memory locations differentiated from other such sets in VXI/VMEbus
systems by six signal lines known as address modifiers. n is the number of address lines
required to uniquely specify a byte location in a given space. Valid numbers for n are 16,
24, and 32.

address window A range of address space that can be accessed from the application program.

ANSI American National Standards Institute

ASCII American Standard Code for Information Interchange. A 7-bit standard code adopted to
facilitate the interchange of data among various types of data processing and data
communications equipment.

ASIC Application-Specific Integrated Circuit (a custom chip)

asserted A signal in its active true state.

asynchronous Not synchronized; not controlled by periodic time signals, and therefore unpredictable
with regard to the timing of execution of commands.

Glossary

LabWindows VXI Library Reference Manual Glossary-2 © National Instruments Corporation

ASYNC Protocol A two-device, two-line handshake trigger protocol using two consecutive even/odd
trigger lines (a source/acceptor line and an acknowledge line).

Glossary

© National Instruments Corporation Glossary-3 LabWindows VXI Library Reference Manual

B

backplane An assembly, typically a PCB, with 96-pin connectors and signal paths that bus the
connector pins. A C-size VXIbus system will have two sets of bused connectors called
the J1 and J2 backplanes. A D-size VXIbus system will have three sets of bused
connectors called the J1, J2, and J3 backplane.

BERR* Bus Error signal. This signal is asserted by either a slave device or the BTO unit when an
incorrect transfer is made on the Data Transfer Bus (DTB). The BERR* signal is also
used in VXI for certain protocol implementations such as writes to a full Signal register
and synchronization under the Fast Handshake Word Serial Protocol.

binary A numbering system with a base of 2.

bit Binary digit. The smallest possible unit of data: a two-state, true/false, 1/0 alternative.
The building block of binary coding and numbering systems. Eight bits make up a byte.

bit vector A string of related bits in which each bit has a specific meaning.

buffer Temporary memory/storage location for holding data before it can be transmitted
elsewhere.

bus master A device that is capable of requesting the Data Transfer Bus (DTB) for the purpose of
accessing a slave device.

byte A grouping of adjacent binary digits operated on by the computer as a single unit. In
VXI systems, a byte consists of 8 bits.

byte order How bytes are arranged within a word or how words are arranged within a longword.
Motorola ordering stores the most significant byte (MSB) or word first, followed by the
least significant byte (LSB) or word. Intel ordering stores the LSB or word first,
followed by the MSB or word.

C

CLK10 A 10-MHz, ± 100-ppm, individually buffered (to each module slot), differential ECL
system clock that is sourced from Slot 0 and distributed to Slots 1 through 12 on P2. It is
distributed to each slot as a single-source, single-destination signal with a matched delay
of under 8 nsec.

command A directive to a device. In VXI, three types of commands are as follows:
In Word Serial Protocol, a 16-bit imperative to a servant from its Commander (written to
the Data Low register);
In Shared Memory Protocol, a 16-bit imperative from a client to a server, or vice versa
(written to the Signal register);
In Instrument devices, an ASCII-coded, multi-byte directive.

commander A Message-Based device which is also a bus master and can control one or more
Servants.

controller An intelligent device (usually involving a CPU) that is capable of controlling other
devices.

CR Carriage Return; the ASCII character 0Dh.

Glossary

LabWindows VXI Library Reference Manual Glossary-4 © National Instruments Corporation

D

deasserted A signal in its inactive false state.

decimal Numbering system based upon the ten digits 0 to 9. Also known as base 10.

de-referencing Accessing the contents of the address location pointed to by a pointer.

default handler Automatically installed at startup to handle associated interrupt conditions; the software
can then replace it with a specified handler.

DIR Data In Ready

DirDorAbort Transfer aborted; device not DIR or not DOR

DIRviol Data In Ready violation

DOR Data Out Ready

DORviol Data Out Ready violation

DRAM Dynamic RAM (Random Access Memory); storage that the computer must refresh at
frequent intervals.

E

ECL Emitter-Coupled Logic

embedded controller An intelligent CPU (controller) interface plugged directly into the VXI backplane, giving
it direct access to the VXIbus. It must have all of its required VXI interface capabilities
built in.

END Signals the end of a data string.

EOS End Of String; a character sent to designate the last byte of a data message.

ERR Protocol error

Event signal A 16-bit value written to a Message-Based device's Signal register in which the most
significant bit (bit 15) is a 1, designating an Event (as opposed to a Response signal).
The VXI specification reserves half of the Event values for definition by the VXI
Consortium. The other half are user defined.

Extended Class device A class of VXIbus device defined for future expansion of the VXIbus specification.
These devices have a subclass register within their configuration space that defines the
type of extended device.

Extended Longword A form of Word Serial communication in which Commanders and Servants communicate
Serial Protocol with 48-bit data transfers.

F

FHS Fast Handshake; a mode of the Word Serial Protocol which uses the VXIbus signals
DTACK* and BERR* for synchronization instead of the Response register bits.

Glossary

© National Instruments Corporation Glossary-5 LabWindows VXI Library Reference Manual

FIFO First In-First Out; a method of data storage in which the first element stored is the first
one retrieved.

FIOerr Error reading or writing file

ForcedAbort User abort occurred during I/O.

G

GPIO General Purpose Input Output, a module within the National Instruments TIC chip which
is used for two purposes. First, GPIOs are used for connecting external signals to the TIC
chip for routing/conditioning to the VXIbus trigger lines. Second, GPIOs are used as part
of a crosspoint switch matrix.

H

handshaking A type of protocol that makes it possible for two devices to synchronize operations.

hex Hexadecimal; the numbering system with base 16, using the digits 0 to 9 and letters A
to F.

high-level Programming with instructions in a notation more familiar to the user than machine code.
Each high-level statement corresponds to several low-level machine code instructions and
is machine-independent, meaning that it is portable across many platforms.

I

IACK Interrupt Acknowledge

IEEE Institute of Electrical and Electronics Engineers

IEEE 1014 The VME specification.

IEEE 488 Standard 488-1978, which defines the GPIB. Its full title is IEEE Standard Digital
Interface for Programmable Instrumentation. Also referred to as IEEE 488.1 since the
adoption of IEEE 488.2.

IEEE 488.2 A supplemental standard for GPIB. Its full title is Codes, Formats, Protocols and
Common Commands.

I/O Input/output; the techniques, media, or devices used to achieve communication between
entities.

interrupt A means for a device to notify another device that an event occurred.

interrupt handler A functional module that detects interrupt requests generated by interrupters and
performs appropriate actions.

interrupter A device capable of asserting interrupts and responding to an interrupt acknowledge
cycle.

InvalidLA Invalid logical address

IODONE Successful data transfer

Glossary

LabWindows VXI Library Reference Manual Glossary-6 © National Instruments Corporation

K

kilobyte A thousand bytes.

L

LF Linefeed; the ASCII character 0Ah.

logical address An 8-bit number that uniquely identifies the location of each VXIbus device's
configuration registers in a system. The A16 register address of a device is
C000h + Logical Address * 40h.

longword Data type of 32-bit integers.

Longword Serial A form of Word Serial communication in which Commanders and Servants communicate
Protocol with 32-bit data transfers instead of 16-bit data transfers as in the normal Word Serial

Protocol.

low-level Programming at the system level with machine-dependent commands.

M

master A functional part of a MXI/VME/VXIbus device that initiates data transfers on the
backplane. A transfer can be either a read or a write.

Memory Class device A VXIbus device that, in addition to configuration registers, has memory in VME A24 or
A32 space that is accessible through addresses on the VME/VXI data transfer bus.

Message-Based device An intelligent device that implements the defined VXIbus registers and communication
protocols. These devices are able to use Word Serial Protocol to communicate with one
another through communication registers.

MODID Module Identification lines; a set of 13 signal lines on the VXI backplane that VXI
systems use to identify which modules are located in which slots in the mainframe.

MQE Multiple Query Error; a type of Word Serial Protocol error. If a Commander sends two
Word Serial queries to a Servant without reading the response to the first query before
sending the second query, a MQE is generated.

MXIbus Multisystem eXtension Interface Bus; a high-performance communication link that
interconnects devices using round, flexible cables.

N

NI-VXI The National Instruments bus interface software for VME/VXIbus systems.

nonprivileged One of the defined types of VMEbus data transfers; indicated by certain address modifier
access codes. Each of the defined VMEbus address spaces has a defined nonprivileged access

mode.

null A special value to denote that the contents (usually of a pointer) are invalid or zero.

Glossary

© National Instruments Corporation Glossary-7 LabWindows VXI Library Reference Manual

P

peek To read the contents.

pointer A data structure that contains an address or other indication of storage location.

poke To write a value.

privileged access See Supervisory Access.

protocol Set of rules or conventions governing the exchange of information between computer
systems.

Q

query Like command, causes a device to take some action, but requires a response containing
data or other information. A command does not require a response.

queue A group of items waiting to be acted upon by the computer. The arrangement of the
items determines their processing priority. Queues are usually accessed in a FIFO
fashion.

R

read To get information from any input device or file storage media.

Register-Based device A Servant-only device that supports only the four basic VXIbus configuration registers.
Register-Based devices are typically controlled by Message-Based devices via device-
dependent register reads and writes.

REQF Request False; a VXI Event condition transferred using either VXI signals or VXI
interrupts, indicating that a Servant no longer has a need for service.

REQT Request True; a VXI Event condition transferred using either VXI signals or VXI
interrupts, indicating that a Servant has a need for service.

Resource Manager A Message-Based Commander located at Logical Address 0, which provides
configuration management services such as address map configuration, Commander and
Servant mappings, and self-test and diagnostic management.

Response signal Used to report changes in Word Serial communication status between a Servant and its
Commander.

ret Return value.

RM See Resource Manager.

ROAK Release On Acknowledge; a type of VXI interrupter which always deasserts its interrupt
line in response to an IACK cycle on the VXIbus. All Message-Based VXI interrupters
must be ROAK interrupters.

ROR Release On Request; a type of VME bus arbitration where the current VMEbus master
relinquishes control of the bus only when another bus master requests the VMEbus.

Glossary

LabWindows VXI Library Reference Manual Glossary-8 © National Instruments Corporation

RORA Release On Register Access; a type of VXI/VME interrupter which does not deassert its
interrupt line in response to an IACK cycle on the VXIbus. A device-specific register
access is required to remove the interrupt condition from the VXIbus. The VXI
specification recommends that VXI interrupters be only ROAK interrupters.

RR Read Ready; a bit in the Response register of a Message-Based device used in Word
Serial Protocol indicating that a response to a previously sent query is pending.

RRviol Read Ready protocol violation; a type of Word Serial Protocol error. If a Commander
attempts to read a response from the Data Low register when the device is not Read
Ready (does not have a response pending), a Read Ready violation may be generated.

S

sec seconds

SEMI-SYNC Protocol A one-line, open collector, multiple-device handshake trigger protocol.

servant A device controlled by a Commander; there are Message-Based and Register-Based
Servants.

Shared Memory Protocol A communications protocol for Message-Based devices that uses a block of memory that
is accessible to both a client and a server. The memory block acts as the medium for the
protocol transmission.

short integer Data type of 16 bits, same as word.

signal Any communication between Message-Based devices consisting of a write to a Signal
register. Sending a signal requires that the sending device have VMEbus master
capability.

signed integer n bit pattern, interpreted such that the range is from -2(n-1) to +2(n-1) -1.

slave A functional part of a MXI/VME/VXIbus device that detects data transfer cycles initiated
by a VMEbus master and responds to the transfers when the address specifies one of the
device's registers.

SMP See Shared Memory Protocol.

status/ID A value returned during an IACK cycle. In VME, usually an 8-bit value which is either a
status/data value or a vector/ID value used by the processor to determine the source. In
VXI, a 16-bit value used as a data; the lower 8 bits form the VXI logical address of the
interrupting device and the upper 8 bits specify the reason for interrupting.

STST START/STOP trigger protocol; a one-line, multiple-device protocol which can be
sourced only by the VXI Slot 0 device and sensed by any other device on the VXI
backplane.

supervisory access One of the defined types of VMEbus data transfers; indicated by certain address modifier
codes.

synchronous A communications system that follows the command/response cycle model. In this
communications model, a device issues a command to another device; the second device executes the

command and then returns a response. Synchronous commands are executed in the order
they are received.

Glossary

© National Instruments Corporation Glossary-9 LabWindows VXI Library Reference Manual

SYNC Protocol The most basic trigger protocol, simply a pulse of a minimum duration on any one of the
trigger lines.

SYSFAIL* A VMEbus signal that is used by a device to indicate an internal failure. A failed device
asserts this line. In VXI, a device that fails also clears its PASSed bit in its Status
register.

SYSRESET* A VMEbus signal that is used by a device to indicate a system reset or power-up
condition.

system hierarchy The tree structure of the Commander/Servant relationships of all devices in the system at
a given time. In the VXIbus structure, each Servant has a Commander. A Commander
can in turn be a Servant to another Commander.

T

TC All bytes received

TIC Trigger Interface Chip; a proprietary National Instruments ASIC used for direct access to
the VXI trigger lines. The TIC contains a 16-bit counter, a dual 5-bit tick timer, and a
full crosspoint switch.

tick The smallest unit of time as measured by an operating system.

TIMO_RES Timed out before response received

TIMO_SEND Timed out before able to send command

trigger Either TTL or ECL lines used for intermodule communication.

tristated Defines logic that can have one of three states: low, high, and high-impedance.

TTL Transistor-Transistor Logic

U

unsigned integer n bit pattern interpreted such that the range is from 0 to 2n -1.

UnSupCom Unsupported Command; a type of Word Serial Protocol error. If a Commander sends a
command or query to a Servant which the Servant does not know how to interpret, an
Unsupported Command protocol error is generated.

V

VME Versa Module Eurocard or IEEE 1014

void In the C language, a generic data type that can be cast to any specific data type.

VIC VXI Interactive Control program, a part of the NI-VXI bus interface software package.
Used to program VXI devices, and develop and debug VXI application programs. Called
VICtext when used on text-based platforms.

VXIbus VMEbus Extensions for Instrumentation

Glossary

LabWindows VXI Library Reference Manual Glossary-10 © National Instruments Corporation

VXIedit VXI Resource Editor program, a part of the NI-VXI bus interface software package.
Used to configure the system, edit the manufacturer name and ID numbers, edit the
model names of VXI and non-VXI devices in the system, as well as the system interrupt
configuration information, and display the system configuration information generated by
the Resource Manager. Called VXItedit when used on text-based platforms.

W

Word Serial Protocol The simplest required communication protocol supported by Message-Based devices in
the VXIbus system. It utilizes the A16 communication registers to perform 16-bit data
transfers using a simple polling handshake method.

word A data quantity consisting of 16 bits.

WR Write Ready; a bit in the Response register of a Message-Based device used in Word
Serial Protocol indicating the ability for a Servant to receive a single command/query
written to its Data Low register.

write Copying data to a storage device.

WRviol Write Ready protocol violation; a type of Word Serial Protocol error. If a Commander
attempts to write a command or query to a Servant that is not Write Ready (already has a
command or query pending), a Write Ready protocol violation may be generated.

© National Instruments Corporation Index-1 LabWindows VXI Library Reference Manual

Index

A

abort functions
WSabort, 3-2 to 3-3
WSSabort, 4-14

acceptor trigger functions. See VXI Trigger
functions.

access privilege functions
GetPrivilege, 5-5
SetPrivilege, 5-17

AcknowledgeTrig function, 10-2 to 10-3
AcknowledgeVXIint function, 9-2
AssertSysreset function, 11-2
AssertVXIint function, 9-3

B

byte/word order functions
GetByteOrder, 5-2
SetByteOrder, 5-15

C

C language standalone functions, 1-6
ClearBusError function, 5-2
CloseVXIlibrary function, 2-2
Commander Word Serial Protocol functions

definition of, 1-5
overview, 3-1
WSabort, 3-2 to 3-3
WSclr, 3-4
WScmd, 3-5 to 3-6
WSEcmd, 3-7 to 3-8
WSgetTmo, 3-9
WSLcmd, 3-10 to 3-11
WSLresp, 3-12 to 3-13
WSrd, 3-14 to 3-15
WSrdf, 3-16 to 3-18
WSrdi, 3-19 to 3-20
WSrdl, 3-21 to 3-22
WSresp, 3-23 to 3-24
WSrtf, 3-30 to 3-31
WSrti, 3-32 to 3-33
WSrtl, 3-34 to 3-35
WSsetTmo, 3-25

WStrg, 3-26 to 3-27
WSwrt, 3-28 to 3-29

configuration functions. See System Configuration
functions.

context functions. See Low-Level VXIbus Access
functions.

copy functions
VXImemCopy, 7-8 to 7-9
VXImove, 6-5 to 6-6

CreateDevInfo function, 2-3
customer communication, xiii, Appendix-1

D

DeAssertVXIint function, 9-4
DefaultACfailHandler function, 11-21
DefaultBusErrorHandler function, 11-22
DefaultSignalHandler function, 8-14
DefaultSoftResetHandler function, 11-23
DefaultSysfailHandler function, 11-24
DefaultSysresetHandler function, 11-25
DefaultTrigHandler function, 10-25
DefaultTrigHandler2 function, 10-26
DefaultVXIintHandler function, 9-14
DefaultWSScmdHandler function, 4-33
DefaultWSSEcmdHandler function, 4-34
DefaultWSSLcmdHandler function, 4-35
DefaultWSSrdHandler function, 4-36
DefaultWSSwrtHandler function, 4-37
device information functions. See System

Configuration functions.
directories for LabWindows, 1-1
DisableACfail function, 11-3
DisableSignalInt function, 8-2
DisableSoftReset function, 11-4
DisableSysfail function, 11-5
DisableSysreset function, 11-6
DisableTrigSense function, 10-4
DisableVXIint function, 9-5
DisableVXItoSignalInt function, 9-6
documentation

conventions used in the manual, xii to xiii
organization of manual, xi to xiii
related documentation, xiii

Index

LabWindows VXI Library Reference Manual Index-2 © National Instruments Corporation

E

EnableACfail function, 11-7
EnableSignalInt, 8-3
EnableSoftReset function, 11-8
EnableSysfail function, 11-9
EnableSysreset function, 11-10
EnableTrigSense function, 10-5 to 10-6
EnableVXIint function, 9-7
EnableVXItoSignalInt function, 9-8
Extended Longword Serial command (WSEcmd), 3-7

to 3-8
extender functions. See VXIbus Extender functions.

F

fax technical support, Appendix-1
FindDevLA function, 2-4 to 2-5
function classes

classes in the function tree, 1-5
definition of, 1-4

G

GenProtError function, 4-2
GetACfailHandler function, 11-11
GetBusErrorHandler function, 11-12
GetByteOrder function, 5-3
GetContext function, 5-4
GetDevInfo function, 2-6 to 2-7
GetDevInfoLong function, 2-8
GetDevInfoShort function, 2-9 to 2-10
GetDevInfoStr function, 2-11
GetMyLA function, 7-2
GetPrivilege function, 5-5
GetSignalHandler function, 8-4
GetSoftResetHandler function, 11-13
GetSysfailHandler function, 11-14
GetSysresetHandler function, 11-15
GetTrigHandler, 10-7
GetVXIbusStatus function, 5-6
GetVXIbusStatusInd function, 5-7 to 5-8
GetVXIintHandler function, 9-9
GetWindowRange function, 5-9 to 5-10
GetWSScmdHandler function, 4-3
GetWSSEcmdHandler function, 4-4
GetWSSLcmdHandler function, 4-5
GetWSSrdHandler function, 4-6
GetWSSwrtHandler function, 4-7
global variables, 1-7

H

hardware context functions. See Low-Level VXIbus
Access functions.

High-Level VXIbus Access functions
definition of, 1-5
overview, 6-1
VXIin, 6-2 to 6-3
VXIinReg, 6-4
VXImove, 6-5 to 6-6
VXIout, 6-7 to 6-8
VXIoutReg, 6-9

I

InitVXIlibrary function, 2-12
installing the VXI Library, 1-1
interrupt functions. See VXI Interrupt functions.
interrupt handler functions. See Servant Word Serial

Protocol functions; System Interrupt Handler
functions.

L

LabWindows VXI Library package, 1-1. See also
VXI Library.

local resource access functions
definition of, 1-5
GetMyLA, 7-2
overview, 7-1
ReadMODID, 7-3
SetMODID, 7-4
VXIinLR, 7-5
VXImemAlloc, 7-6 to 7-7
VXImemCopy, 7-8 to 7-9
VXImemFree, 7-10 to 7-11
VXIoutLR, 7-12 to 7-13

logical address. See GetMyLA function.
Longword Serial command (WSLcmd), 3-10 to 3-11
Low-Level VXIbus Access functions

ClearBusError, 5-2
definition of, 1-5
GetByteOrder, 5-3
GetContext, 5-4
GetPrivilege, 5-5
GetVXIbusStatus, 5-6
GetVXIbusStatusInd, 5-7 to 5-8
GetWindowRange, 5-9 to 5-10
MapVXIAddress, 5-11 to 5-12
overview, 5-1

Index

© National Instruments Corporation Index-3 LabWindows VXI Library Reference Manual

RestoreContext, 5-13
SaveContext, 5-14
SetByteOrder, 5-15
SetContext, 5-16
SetPrivilege, 5-17
standalone C functions, 1-6
UnMapVXIAddress, 5-18 to 5-19
VXIpeek, 5-20
VXIpoke, 5-21 to 5-22

M

map trigger functions. See VXI Trigger functions.
MapECLtrig function, 12-2
MapTrigToTrig function, 10-8 to 10-9
MapTTLtrig function, 12-3
MapUtilBus function, 12-4
MapVXIAddress function, 5-11 to 5-12
MapVXIint function, 12-5 to 12-6
memory management functions

CloseVXIlibrary, 2-2
VXImemAlloc, 7-6 to 7-7
VXImemCopy, 7-8 to 7-9
VXImemFree, 7-10 to 7-11
VXImove, 6-5 to 6-6

MODID lines
ReadMODID function, 7-3
SetMODID function, 7-4

P

privilege functions. See access privilege functions.
protocol error functions

GenProtError, 4-2
RespProtError, 4-8

R

read functions
VXIin, 6-2 to 6-3
VXIinLR, 7-5
VXIinReg, 6-4
WSrd, 3-14 to 3-15
WSrdf, 3-16 to 3-18
WSrdi, 3-19 to 3-20
WSrdl, 3-21 to 3-22
WSSrd, 4-20 to 4-21
WSSrdi, 4-22 to 4-23
WSSrdl, 4-24 to 4-25

ReadMODID function, 7-3
resource functions. See local resource access

functions.
response functions

WSLresp, 3-12 to 3-13
WSresp, 3-23 to 3-24
WSSLnoResp, 4-17
WSSLsendResp, 4-18
WSSnoResp, 4-19
WSSsendResp, 4-26

RespProtError function, 4-8
RestoreContext function, 5-13
RouteSignal function, 8-5 to 8-6
RouteVXIint function, 9-10 to 9-11

S

SaveContext function, 5-14
Servant Word Serial Protocol functions

DefaultWSScmdHandler, 4-33
DefaultWSSEcmdHandler, 4-34
DefaultWSSLcmdHandler, 4-35
DefaultWSSrdHandler, 4-36
DefaultWSSwrtHandler, 4-37
definition of, 1-5
GenProtError, 4-2
GetWSScmdHandler, 4-3
GetWSSEcmdHandler, 4-4
GetWSSLcmdHandler, 4-5
GetWSSrdHandler, 4-6
GetWSSwrtHandler, 4-7
overview, 4-1
RespProtError, 4-8
SetWSScmdHandler, 4-9
SetWSSEcmdHandler, 4-10
SetWSSLcmdHandler, 4-11
SetWSSrdHandler, 4-12
SetWSSwrtHandler, 4-13
standalone C functions, 1-6
WSSabort, 4-14
WSSdisable, 4-15
WSSenable, 4-16
WSSLnoResp, 4-17
WSSLsendResp, 4-18
WSSnoResp, 4-19
WSSrd, 4-20 to 4-21
WSSrdi, 4-22 to 4-23
WSSrdl, 4-24 to 4-25
WSSsendResp, 4-26
WSSwrt, 4-27 to 4-28
WSSwrti, 4-29 to 4-30
WSSwrtl, 4-31 to 4-32

Index

LabWindows VXI Library Reference Manual Index-4 © National Instruments Corporation

SetACfailHandler function, 11-16
SetBusErrorHandler function, 11-17
SetByteOrder function, 5-15
SetContext function, 5-16
SetDevInfo function, 2-13 to 2-14
SetDevInfoLong function, 2-15
SetDevInfoShort function, 2-16 to 2-17
SetDevInfoStr function, 2-18 to 2-19
SetMODID function, 7-4
SetPrivilege function, 5-17
SetSignalHandler function, 8-7
SetSoftResetHandler function, 11-18
SetSysfailHandler function, 11-19
SetSysresetHandler function, 11-20
SetTrigHandler function, 10-10
SETUP program, 1-1
SetVXIintHandler function, 9-12
SetWSScmdHandler function, 4-9
SetWSSEcmdHandler function, 4-10
SetWSSLcmdHandler function, 4-11
SetWSSrdHandler function, 4-12
SetWSSwrtHandler function, 4-13
signal functions. See VXI Signal functions.
SignalDeq function, 8-8 to 8-9
SignalEnq function, 8-10
SignalJam function, 8-11
source trigger functions. See VXI Trigger functions.
SrcTrig function, 10-11 to 10-12
status functions

GetVXIbusStatus, 5-6
GetVXIbusStatusInd, 5-7 to 5-8

System Configuration functions
CloseVXIlibrary, 2-2
CreateDevInfo, 2-3
definition of, 1-5
FindDevLA, 2-4 to 2-5
GetDevInfo, 2-6 to 2-7
GetDevInfoLong, 2-8
GetDevInfoShort, 2-9 to 2-10
GetDevInfoStr, 2-11
InitVXIlibrary, 2-12
overview, 2-1
SetDevInfo, 2-13 to 2-14
SetDevInfoLong, 2-15
SetDevInfoShort, 2-16 to 2-17
SetDevInfoStr, 2-18 to 2-19
standalone C functions, 1-6

System Interrupt Handler functions
AssertSysreset, 11-2
DefaultACfailHandler, 11-21
DefaultBusErrorHandler, 11-22
DefaultSoftResetHandler, 11-23
DefaultSysfailHandler, 11-24
DefaultSysresetHandler, 11-25

definition of, 1-5
DisableACfail, 11-3
DisableSoftReset, 11-4
DisableSysfail, 11-5
DisableSysreset, 11-6
EnableACfail, 11-7
EnableSoftReset, 11-8
EnableSysfail, 11-9
EnableSysreset, 11-10
GetACfailHandler, 11-11
GetBusErrorHandler, 11-12
GetSoftResetHandler, 11-13
GetSysfailHandler, 11-14
GetSysresetHandler, 11-15
overview, 11-1
SetACfailHandler, 11-16
SetBusErrorHandler, 11-17
SetSoftResetHandler, 11-18
SetSysfailHandler, 11-19
SetSysresetHandler, 11-20
standalone C functions, 1-6

T

technical support, Appendix-1
timeout functions

WSgetTmo, 3-9
WSsetTmo, 3-25

TrigAssertConfig function, 10-13 to 10-14
TrigCntrConfig function, 10-15 to 10-16
TrigExtConfig function, 10-17 to 10-18
trigger functions. See VXI Trigger functions; WStrg

function.
TrigTickConfig function, 10-19 to 10-20

U

UnMapTrigToTrig function, 10-21 to 10-22
UnMapVXIAddress function, 5-18 to 5-19

V

VXI Interrupt functions
AcknowledgeVXIint, 9-2
AssertVXIint, 9-3
DeAssertVXIint, 9-4
DefaultVXIintHandler, 9-14
definition of, 1-5
DisableVXIint, 9-5
DisableVXItoSignalInt, 9-6

Index

© National Instruments Corporation Index-5 LabWindows VXI Library Reference Manual

EnableVXIint, 9-7
EnableVXItoSignalInt, 9-8
GetVXIintHandler, 9-9
overview, 9-1
RouteVXIint, 9-10 to 9-11
SetVXIintHandler, 9-12
standalone C functions, 1-6
VXIintAcknowledgeMode, 9-13

VXI Library
function tree, 1-2 to 1-5
installing, 1-1
overview, 1-2 to 1-6
reporting status information, 1-7
standalone C functions, 1-6

VXI Signal functions
DefaultSignalHandler, 8-14
definition of, 1-5
DisableSignalInt, 8-2
EnableSignalInt, 8-3
GetSignalHandler, 8-4
overview, 8-1
RouteSignal, 8-5 to 8-6
SetSignalHandler, 8-7
SignalDeq, 8-8 to 8-9
SignalEnq, 8-10
SignalJam, 8-11
standalone C functions, 1-6
WaitForSignal, 8-12 to 8-13

VXI Trigger functions
AcknowledgeTrig, 10-2 to 10-3
DefaultTrigHandler, 10-25
DefaultTrigHandler2, 10-26
definition of, 1-5
DisableTrigSense, 10-4
EnableTrigSense, 10-5 to 10-6
GetTrigHandler, 10-7
MapTrigToTrig, 10-8 to 10-9
old VXI trigger functions, 1-7
overview, 10-1
SetTrigHandler, 10-10
SrcTrig, 10-11 to 10-12
standalone C functions, 1-6
TrigAssertConfig, 10-13 to 10-14
TrigCntrConfig, 10-15 to 10-16
TrigExtConfig, 10-17 to 10-18
TrigTickConfig, 10-19 to 10-20
UnMapTrigToTrig, 10-21 to 10-22
WaitForTrig, 10-23 to 10-24

VXIbus Extender functions
definition of, 1-5
MapECLtrig, 12-2
MapTTLtrig, 12-3
MapUtilBus, 12-4

MapVXIint, 12-5 to 12-6
overview, 12-1

VXIin function, 6-2 to 6-3
VXIinLR function, 7-5
VXIinReg function, 6-4
VXIintAcknowledgeMode function, 9-13
VXImemAlloc function, 7-6 to 7-7
VXImemCopy function, 7-8 to 7-9
VXImemFree function, 7-10 to 7-11
VXImove function, 6-5 to 6-6
VXIout function, 6-7 to 6-8
VXIoutLR function, 7-12 to 7-13
VXIoutReg function, 6-9
VXIpeek function, 5-20
VXIpoke function, 5-21 to 5-22

W

WaitForSignal function, 8-12 to 8-13
WaitForTrig function, 10-23 to 10-24
window functions. See Low-Level VXIbus Access

functions.
Word Serial communication. See Commander Word

Serial Protocol functions; Servant Word Serial
Protocol functions.

write functions
VXIout, 6-7 to 6-8
VXIoutLR, 7-12 to 7-13
VXIoutReg, 6-9
WSSwrt, 4-27 to 4-28
WSSwrti, 4-29 to 4-30
WSSwrtl, 4-31 to 4-32
WSwrt, 3-28 to 3-29
WSwrtf, 3-30 to 3-31
WSwrti, 3-32 to 3-33
WSwrtl, 3-34 to 3-35

WSabort function, 3-2 to 3-3
WSclr function, 3-4
WScmd function, 3-5 to 3-6
WSEcmd function, 3-7 to 3-8
WSgetTmo function, 3-9
WSLcmd function, 3-10 to 3-11
WSLresp function, 3-12 to 3-13
WSrd function, 3-14 to 3-15
WSrdf function, 3-16 to 3-18
WSrdi function, 3-19 to 3-20
WSrdl function, 3-21 to 3-22
WSresp function, 3-23 to 3-24
WSrtf function, 3-30 to 3-31
WSrti function, 3-32 to 3-33
WSrtl function, 3-34 to 3-35
WSSabort function, 4-14

Index

LabWindows VXI Library Reference Manual Index-6 © National Instruments Corporation

WSSdisable function, 4-15
WSSenable function, 4-16
WSsetTmo function, 3-25
WSSLnoResp function, 4-17
WSSLsendResp function, 4-18
WSSnoResp function, 4-19
WSSrd function, 4-20 to 4-21
WSSrdi function, 4-22 to 4-23
WSSrdl function, 4-24 to 4-25
WSSsendResp function, 4-26
WSSwrt function, 4-27 to 4-28
WSSwrti function, 4-29 to 4-30
WSSwrtl function, 4-31 to 4-32
WStrg function, 3-26 to 3-27
WSwrt function, 3-28 to 3-29

	LabWindows VXI Library Reference Manual Version 2.3
	Important Information
	Limited Warranty
	Copyright
	Trademarks
	Warning

	Table of Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 VXI Library Overview
	The LabWindows VXI Library Package
	Installing the VXI Library
	LabWindows VXI Library Overview
	The VXI Library Functions
	Reporting Status Information

	Chapter 2 System Configuration Functions
	CloseVXIlibrary
	CreateDevInfo
	FindDevLA
	GetDevInfo
	GetDevInfoLong
	GetDevInfoShort
	GetDevInfoStr
	InitVXIlibrary
	SetDevInfo
	SetDevInfoLong
	SetDevInfoShort
	SetDevInfoStr

	Chapter 3 Commander Word Serial Protocol Functions
	WSabort
	WSclr
	WScmd
	WSEcmd
	WSgetTmo
	WSLcmd
	WSLresp
	WSrd
	WSrdf
	WSrdi
	WSrdl
	WSresp
	WSsetTmo
	WStrg
	WSwrt
	WSwrtf
	WSwrti
	WSwrtl

	Chapter 4 Servant Word Serial Protocol Functions
	GenProtError
	GetWSScmdHandler
	GetWSSEcmdHandler
	GetWSSLcmdHandler
	GetWSSrdHandler
	GetWSSwrtHandler
	RespProtError
	SetWSScmdHandler
	SetWSSEcmdHandler
	SetWSSLcmdHandler
	SetWSSrdHandler
	SetWSSwrtHandler
	WSSabort
	WSSdisable
	WSSenable
	WSSLnoResp
	WSSLsendResp
	WSSnoResp
	WSSrd
	WSSrdi
	WSSrdl
	WSSsendResp
	WSSwrt
	WSSwrti
	WSSwrtl
	Default Handlers for the Servant Word Serial Functions
	DefaultWSScmdHandler
	DefaultWSSEcmdHandler
	DefaultWSSLcmdHandler
	DefaultWSSrdHandler
	DefaultWSSwrtHandler

	Chapter 5 Low-Level VXIbus Access Functions
	ClearBusError
	GetByteOrder
	GetContext
	GetPrivilege
	GetVXIbusStatus
	GetVXIbusStatusInd
	GetWindowRange
	MapVXIAddress
	RestoreContext
	SaveContext
	SetByteOrder
	SetContext
	SetPrivilege
	UnMapVXIAddress
	VXIpeek
	VXIpoke

	Chapter 6 High-Level VXIbus Access Functions
	VXIin
	VXIinReg
	VXImove
	VXIout
	VXIoutReg

	Chapter 7 Local Resource Access Functions
	GetMyLA
	ReadMODID
	SetMODID
	VXIinLR
	VXImemAlloc
	VXImemCopy
	VXImemFree
	VXIoutLR

	Chapter 8 VXI Signal Functions
	DisableSignalInt
	EnableSignalInt
	GetSignalHandler
	RouteSignal
	SetSignalHandler
	SignalDeq
	SignalEnq
	SignalJam
	WaitForSignal
	Default Handler for VXI Signal Functions
	DefaultSignalHandler

	Chapter 9 VXI Interrupt Functions
	AcknowledgeVXIint
	AssertVXIint
	DeAssertVXIint
	DisableVXIint
	DisableVXItoSignalInt
	EnableVXIint
	EnableVXItoSignalInt
	GetVXIintHandler
	RouteVXIint
	SetVXIintHandler
	VXIintAcknowledgeMode
	Default Handler for VXI Interrupt Functions
	DefaultVXIintHandler

	Chapter 10 VXI Trigger Functions
	AcknowledgeTrig
	DisableTrigSense
	EnableTrigSense
	GetTrigHandler
	MapTrigToTrig
	SetTrigHandler
	SrcTrig
	TrigAssertConfig
	TrigCntrConfig
	TrigExtConfig
	TrigTickConfig
	UnMapTrigToTrig
	WaitForTrig
	Default Handlers for VXI Trigger Functions
	DefaultTrigHandler
	DefaultTrigHandler2

	Chapter 11 System Interrupt Handler Functions
	AssertSysreset
	DisableACfail
	DisableSoftReset
	DisableSysfail
	DisableSysreset
	EnableACfail
	EnableSoftReset
	EnableSysfail
	EnableSysreset
	GetACfailHandler
	GetBusErrorHandler
	GetSoftResetHandler
	GetSysfailHandler
	GetSysresetHandler
	SetACfailHandler
	SetBusErrorHandler
	SetSoftResetHandler
	SetSysfailHandler
	SetSysresetHandler
	Default Handlers for the System Interrupt Handler Functions
	DefaultACfailHandler
	DefaultBusErrorHandler
	DefaultSoftResetHandler
	DefaultSysfailHandler
	DefaultSysresetHandler

	Chapter 12 VXIbus Extender Functions
	MapECLtrig
	MapTTLtrig
	MapUtilBus
	MapVXIint

	Appendix Customer Communication
	Glossary
	Index
	Tables
	Table 1-1. LabWindows Directories
	Table 1-2. The VXI Library Function Tree
	Table 1-3. Functions for use in C Programs, .obj files, or the LabWindows Run-Time System
	Table 1-4. Old VXI Trigger Functions

